Generalized Linear Model

Emma Li

Linear Model (LM)

Linear Model makes several key assumptions:

- Linear relationship between X and $E(Y)=\mu=X * \beta$
- Multivariate normality
- No or little multicollinearity
- No auto-correlation

Error terms have similar variances

$$
E(Y)=\mu=X^{*} \beta
$$

Generalized Linear Model (GLM)

Generalized Linear Model is the general case of linear regression. It allows Y to have error distribution model other than normal distribution.

Key Assumptions:

- Linear relationship between X and $g(E(Y))=\mathbf{g}(\mu)=X^{*} \beta$

Depending on the distribution, we have a link function $g()$

- No or little multicollinearity
- No auto-correlation
- Error terms have similar variances

$$
\mathbf{g}(E(Y))=\mathbf{g}(\mu)=X^{*} \beta
$$

Distributions in Exponential Family

Y can follow normal distribution, Bernoulli distribution, binomial distribution, Poisson distribution, negative binomial distribution, gamma distribution, Tweedie distribution, exponential distribution, etc.

For example,

1. Y is count (e.g. claim count): Poisson distribution
2. Y is binary (e.g., loss or no loss): Bernoulli distribution

$$
g(E(Y))=g(\mu)=X^{*} \beta
$$

Link Functions

$X^{*} \beta \in(-\infty, \infty)$

- Wrong: $E(Y)=\mu=X^{*} \beta$
$g()$ is required when the range of $E(Y)$ differs from the range of $X^{*} \beta$
- Correct: $g(E(Y))=g(\mu)=X * \beta$

The domain of $g()$ is matched to the range of $E(Y)$.
The range of $g()$ is matched to the range of $X * \beta$

For example,

1. Y is count (e.g. claim count): Poisson distribution
$E(Y)=\mu \in(0, \infty)$
$g()$ can be log function: $g(\mu)=\ln (\mu)=X^{*} \beta$
$g(\mu) \in(-\infty, \infty)$

Link Functions

2. Y is binary (e.g., loss or no loss): Bernoulli distribution $E(Y)=\mu \in(0,1)$
$g()$ can be logit function: $g(\mu)=\ln (\mu /(1-\mu))=X * \beta$
or
$g()$ can be Inverse CDF: $g(\mu)=$ Inverse of $\operatorname{Normal} \operatorname{CDF}(\mu)=X * \beta$ or
$g()$ can be Complementary log-log function: $g(\mu)=\log (-\log (1-\mu))=X$ * β
$g(\mu) \in(-\infty, \infty)$

$$
\mathbf{g}(E(Y))=\mathbf{g}(\mu)=\mathbf{X} * \beta
$$

R Function in stats package

"R function $g l m()$ is used to fit generalized linear models, specified by giving a symbolic description of the linear predictor and a description of the error distribution."

Inputs: glm(formula, family, data, ...)
Outputs: coefficients, p values, residuals, fitted values, summary, ...

$$
g(E(Y))=g(\mu)=X^{*} \beta
$$

Simulated Data

This data set is simulated. It records the numbers of personal auto claims incurred in 2015, the numbers of insured autos, the policyholders' ages, and their family sizes by policy level.

Variables	Descriptions
clm	Claim Counts
num_car	Number of Insured Personal Auto
age	Age of Policyholders
familiy_size	Family Size of Policyholders

```
rootDir<-"/Volumes/LEMMARIL/RPM Workshop/R Workshop/Github/rpm2016/"
clm_cnt <- read.csv(file=paste0(rootDir,"11_GLMs.csv"))
```


Summary and Graphs

```
dim(clm_cnt)
```

```
## [1] 240 4
```

colnames (clm_cnt)
\#\# [1] "clm" "age" "num_car" "family_size"
summary (clm_cnt)

\#\#	clm	age	num_car	family_size
\#	Min. $\quad 0.0000$	Min. $\mathbf{1 5 . 0}$	Min. $\quad 1.000$	Min. $\quad 1.00$
\#	1st Qu. 0.0000	1st Qu.:24.0	1st Qu.: 1.000	1st Qu.: 1.00
\#\#	Median $: 1.0000$	Median :44.5	Median $: 1.000$	Median 11.00
\#\#	Mean :0.6833	Mean :44.2	Mean :1.417	Mean :1.55
\#\#	3rd Qu. 1.0000	3rd Qu.:61.0	3rd Qu.:2.000	3rd Qu.:2.00
\#\#	Max. $\quad \mathbf{2 . 0 0 0 0}$	Max. $\mathbf{7 4 . 0}$	Max. $\quad \mathbf{4 . 0 0 0}$	Max. $\quad 4.00$

Summary and Graphs

```
apply(clm_cnt,2,table)
```

```
## $clm
##
## 0}1
## 81 154 5
##
## $age
##
## 15 16 17 18 19 20 21 22 23 24 26 28 29 30 31 33 34 35 36 37 38 39 40 41 42
## 4
## 43 44 45 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 66 67 68 69
## 2
## 70 71 72 73 74
## 4
##
## $num_car
##
## 1 2 2 3 4
## 160}6031
##
## $family_size
##
## 1 1 2 3 4
## 142 68 26 4
```


Summary and Graphs

```
avg<-function(x) {
    data<-aggregate(clm_cnt[,"clm"],by=list(clm_cnt[,x]),FUN=mean)
    barplot(data[,2],main=x,xlab=x,ylab="Claim Count Averages")
}
avg(x="age")
```


Summary and Graphs

```
avg(x="num_car")
```

num_car

Summary and Graphs

avg(x="family_size")
avg(x="family_size")
family_size

Summary and Graphs

```
cor(clm_cnt[,-1])
```

\#\#	age	num_car	family_size
\#\# age	1.0000000	0.10784077	0.10492571
\#\# num_car	0.1078408	1.00000000	0.02524064
\#\# family_size	0.1049257	0.02524064	1.00000000

Choose distribution and link function

1. Y is count (e.g. claim count): Poisson distribution log: $g(\mu)=\log (\mu)=X^{*} \beta$
```
poisson_reg <- glm(clm~ age+num_car+family_size, data = clm_cnt, family = poisson)
summary(poisson_reg)
```

```
Call:
glm(formula = clm ~ age + num_car + family_size, family = poisson,
## data = clm_cnt)
## Deviance Residuals:
\begin{tabular}{lrrrrr} 
\#\# & Min & \(1 Q\) & Median & \(3 Q\) & Max \\
\#\# & -1.2860 & -0.9268 & 0.1221 & 0.3887 & 1.8754
\end{tabular}
## Coefficients:
            Estimate Std. Error z value Pr(>|z|)
    (Intercept) -0.504041 0.275891 -1.827 0.06771 .
    age -0.013699 0.004294 -3.190 0.00142 **
    num_car 0.277694 0.105531 2.631 0.00850 **
    family_size 0.182568 0.098658 1.851 0.06424 .
## ---
## Signif. codes: 0 '***' 0.001 '**'0.01 '*'0.05 '.'0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
## Null deviance: 138.76 on 239 degrees of freedom
## Residual deviance: 121.24 on 236 degrees of freedom
## AIC: 450.3
## Number of Fisher Scoring iterations: 5
```

\#\#
\#\#
\#\#
\#\#
\#\#

Choose distribution and link function

1. Y is count (e.g. claim count): Poisson distribution log: $g(\mu)=\log (\mu)=X *$
```
coef(poisson_reg)
```

\#\#	(Intercept)	age	num_car family_size	
\#\#	-0.5040411	-0.0136992	0.2776940	0.1825675

```
str(poisson_reg)
```

```
## List of 30
## $ coefficients : Named num [1:4] -0.504 -0.0137 0.2777 0.1826
##
##
##
##
##
##
##
##
##
##
##
##
##
    ..- attr(*, "names")= chr [1:4] "(Intercept)" "age" "num_car" "family_size"
    $ residuals : Named num [1:240] 0.337 0.642 -1 0.642 0.037 ...
        ..- attr(*, "names")= chr [1:240] "1" "2" "3" "4" ...
    $ fitted.values : Named num [1:240] 0.748 0.609 0.609 0.609 0.964 ...
        ..- attr(*, "names")= chr [1:240] "1" "2" "3" "4" ...
    $ effects : Named num [1:240] 4.192 -2.739 2.625 1.851 -0.133 ....
        ..- attr(*, "names")= chr [1:240] "(Intercept)" "age" "num_car" "family_size" ... 
    $ R : num [1:4, 1:4] -12.8 0 0 0 -513.7 ...
        ..- attr(*, "dimnames")=List of 2
        .. ..$ : chr [1:4] "(Intercept)" "age" "num_car" "family_size"
        .. ..$ : chr [1:4] "(Intercept)" "age" "num_car" "family_size"
    $ rank : int 4
    $ qr :List of 5
        ..$ qr : num [1:240, 1:4] -12.8063 0.0609 0.0609 0.0609 0.0767 ....
        .. ..- attr(*, "dimnames")=List of 2
```


Choose distribution and link function

1. Y is count (e.g. claim count): Poisson distribution $\log : \mathrm{g}(\mu)=\log (\mu)=\mathrm{X} * \beta$
```
head(poisson_reg$residuals)
```

\#\#	1	2	3	5	6	
$\# \#$	0.33691566	0.64189857	-1.00000000	0.64189857	0.03702878	2.32909207

head (poisson_reg\$fitted.values)

\#\#	1	2	3	4	5	6
\#\#	0.7479903	0.6090510	0.6090510	0.6090510	0.9642934	0.6007644

head (poisson_reg\$data)

\#\#		clm	age	num_car family_size
\#\#	1	1	18	1

Choose distribution and link function

1. Y is count (e.g. claim count): Poisson distribution log: $\mathrm{g}(\mu)=\log (\mu)=\mathrm{X} * \beta$
```
poisson_reg2 <- glm(clm~ age+num_car, data = clm_cnt, family = poisson)
summary(poisson_reg2)
```

```
##
## Call:
## glm(formula = clm ~ age + num_car, family = poisson, data = clm_cnt)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.2997 -0.9575 0.1825 0.3976 1.7579
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.24811 0.23422 -1.059 0.28947
## age -0.01284 0.00425 -3.022 0.00251 **
## num_car 0.27717 0.10406 2.663 0.00773 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 138.76 on 239 degrees of freedom
## Residual deviance: 124.50 on 237 degrees of freedom
## AIC: 451.57
##
## Number of Fisher Scoring iterations: 5
```


Alternative distribution and link function

```
summary(clm_cnt$clm)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 0.0000 1.0000 0.6833}101.0000 2.0000
```

```
table(clm_cnt$clm)
```

```
##
## 0}1
## 81 154 5
```

2. Y is binary (e.g., loss or no loss): Bernoulli distribution logit: $g(\mu)=\ln (\mu /(1-\mu))=X$ * β
```
clm_cnt$clm_cap <- ifelse(clm_cnt$clm==0,0,1)
logistic_reg <- glm(clm_cap~ age+num_car+family_size, data= clm_cnt, family = binomial)
summary(logistic_reg)
```

2. Y is binary (e.g., loss or no loss): Bernoulli distribution logit: $g(\mu)=\ln (\mu /(1-\mu))=X^{*} \beta$
```
##
## Call:
## glm(formula = clm_cap ~ age + num_car + family_size, family = binomial,
    data = clm_cnt)
##
## Deviance Residuals:
\begin{tabular}{rrrrrr} 
\# & Min & \(1 Q\) & Median & \(3 Q\) & Max \\
\(\#\) & -2.1227 & -0.8019 & 0.3648 & 0.7832 & 1.9362
\end{tabular}
##
## Coefficients:
\begin{tabular}{lrrrrr} 
& Estimate & Std. Error z value \(\operatorname{Pr}(>|\mathrm{z}|)\) \\
(Intercept) & -0.504757 & 0.631501 & -0.799 & 0.424117 \\
age & -0.056771 & 0.009853 & -5.762 & \(8.32 \mathrm{e}-09\) *** \\
num_car & 1.772574 & 0.374012 & 4.739 & \(2.14 \mathrm{e}-06\) *** \\
family_size & 0.998410 & 0.258047 & 3.869 & 0.000109 ***
\end{tabular}
    ---
    Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    (Dispersion parameter for binomial family taken to be 1)
    Null deviance: 306.89 on 239 degrees of freedom
    Residual deviance: 232.63 on 236 degrees of freedom
    AIC: 240.63
##
## Number of Fisher Scoring iterations: 5
```


Model Selection

$\mathrm{AIC}=2 * k-2 * \ln (\mathrm{~L})$
$\mathrm{k}=$ the number of parameter
$L=$ the maximized value of the likelihood function of the model M, p(x|M, Beta)

```
AIC(poisson_reg)
```

```
## [1] 450.3045
```

```
AIC(poisson_reg2)
```

```
## [1] 451.5671
```

```
AIC(logistic_reg)
```


Model Selection

$\mathrm{BIC}=\mathrm{k} * \ln (n)-2 * \ln (\mathrm{~L})$
$\mathrm{k}=$ the number of parameter
$L=$ the maximized value of the likelihood function of the model M, p(x|M, Beta)
$\mathrm{n}=$ the number of observations

```
BIC(poisson_reg)
```

\#\# [1] 464.2271

```
BIC(poisson_reg2)
```

\#\# [1] 462.009

```
BIC(logistic_reg)
```


Reference

https://en.wikipedia.org/wiki/Generalized linear model\#Link function
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/glm.html

Q\&A

