Generalized Linear Model

Emma Li

Linear Model (LM)

Linear Model makes several key assumptions:

- Linear relationship between X and $E(Y) = \mu = X * \beta$
- Multivariate normality
- No or little multicollinearity
- No auto-correlation
- Error terms have similar variances

 $E(Y) = \mu = X * \beta$

Generalized Linear Model (GLM)

Generalized Linear Model is the general case of linear regression. It allows Y to have error distribution model other than normal distribution.

Key Assumptions:

- Linear relationship between X and $g(E(Y)) = g(\mu) = X * \beta$ Depending on the distribution, we have a link function g()
- No or little multicollinearity
- No auto-correlation
- Error terms have similar variances

g(E(Y)) = g(μ) = X * β

Distributions in Exponential Family

Y can follow normal distribution, Bernoulli distribution, binomial distribution, Poisson distribution, negative binomial distribution, gamma distribution, Tweedie distribution, exponential distribution, etc.

For example,

- 1. Y is count (e.g. claim count): Poisson distribution
- 2. Y is binary (e.g., loss or no loss): Bernoulli distribution

g(E(Y)) = g(μ) = X * β

Link Functions

 $X * \beta \in (-\infty,\infty)$

• Wrong: $E(Y) = \mu = X * \beta$

g() is required when the range of E(Y) differs from the range of X * β

• Correct: g(E(Y)) = g(μ) = X * β

The domain of g() is matched to the range of E(Y). The range of g() is matched to the range of X * β

For example,

1. Y is count (e.g. claim count): Poisson distribution

 $\mathsf{E}(\mathsf{Y}) = \mu \in (0, \infty)$

g() can be log function: g(μ) = ln(μ) = X * β g(μ) \in (- ∞ , ∞)

Link Functions

- 2. Y is binary (e.g., loss or no loss): Bernoulli distribution $E(Y) = \mu \in (0,1)$
- g() can be logit function: g(μ) = ln(μ / (1- μ)) = X * β

or

g() can be Inverse CDF: g(μ) = Inverse of Normal CDF(μ) = X * β or

g() can be Complementary log-log function: g(μ) = log(-log(1- μ)) = X * β

g(μ) ∈ (-∞,∞)

g(E(Y)) = g(μ) = X * β

R Function in stats package

"R function glm() is used to fit generalized linear models, specified by giving a symbolic description of the linear predictor and a description of the error distribution."

Inputs: glm(formula, family, data, ...)

Outputs: coefficients, p values, residuals, fitted values, summary, ...

g(E(Y)) = g(μ) = X * β

Simulated Data

This data set is simulated. It records the numbers of personal auto claims incurred in 2015, the numbers of insured autos, the policyholders' ages, and their family sizes by policy level.

Variables	Descriptions
clm	Claim Counts
num_car	Number of Insured Personal Auto
age	Age of Policyholders
familiy_size	Family Size of Policyholders

rootDir<-"/Volumes/LEMMARIL/RPM Workshop/R Workshop/Github/rpm2016/"
clm_cnt <- read.csv(file=paste0(rootDir,"11_GLMs.csv"))</pre>

## [1] 240 4			
colnames(clm_cnt)			
## [1] "clm"	"age"	"num_car"	"family_size"
summary(clm_cnt)			

##	clm	age	num_car	family_size
##	Min. :0.0000	Min. :15.0	Min. :1.000	Min. :1.00
##	1st Qu.:0.0000	1st Qu.:24.0	1st Qu.:1.000	1st Qu.:1.00
##	Median :1.0000	Median :44.5	Median :1.000	Median :1.00
##	Mean :0.6833	Mean :44.2	Mean :1.417	Mean :1.55
##	3rd Qu.:1.0000	3rd Qu.:61.0	3rd Qu.:2.000	3rd Qu.:2.00
##	Max. :2.0000	Max. :74.0	Max. :4.000	Max. :4.00

apply(clm_cnt,2,table)

##	\$c]	Lm																							
##																									
##	(0	1	2																					
##	81	1 1!	54	5																					
##																									
##	\$ag	je																							
##																									
##	15	16	17	18	19	20	21	22	23	24	26	28	29	30	31	33	34	35	36	37	38	39	40	41	42
##	4	6	3	8	8	4	6	4	6	13	2	2	3	9	5	4	3	3	3	4	2	3	4	3	5
##	43	44	45	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	66	67	68	69
##	2	1	2	4	4	1	1	4	3	2	8	5	1	8	1	9	5	4	7	5	6	4	7	2	5
##	70	71	72	73	74																				
##	4	2	4	3	9																				
##																									
##	\$nı	.m_	car																						
##																									
##	1	L	2	3		4																			
##	160	0	63	14		3																			
##																									
##	\$fa	ami	1y_:	size	Э																				
##																									
##	1	L	2	3		4																			
##	142	2	68	26		4																			

```
avg<-function(x) {
    data<-aggregate(clm_cnt[,"clm"],by=list(clm_cnt[,x]),FUN=mean)
    barplot(data[,2],main=x,xlab=x,ylab="Claim Count Averages")
}
avg(x="age")</pre>
```


cor(clm_cnt[,-1])

##		age	num_car	family_size
##	age	1.0000000	0.10784077	0.10492571
##	num_car	0.1078408	1.0000000	0.02524064
##	family_size	0.1049257	0.02524064	1.00000000

1. Y is count (e.g. claim count): Poisson distribution

```
\log: g(\mu) = \log(\mu) = X * \beta
```

```
poisson reg <- glm(clm~ age+num car+family size, data = clm cnt, family = poisson)
summary(poisson_reg)
## Call:
## glm(formula = clm ~ age + num car + family size, family = poisson,
      data = clm cnt)
##
##
## Deviance Residuals:
##
      Min
                10 Median
                                  30
                                          Max
## -1.2860 -0.9268 0.1221
                            0.3887
                                      1.8754
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.504041 0.275891 -1.827 0.06771 .
## age
           -0.013699 0.004294 -3.190 0.00142 **
## num car 0.277694 0.105531 2.631 0.00850 **
## family size 0.182568 0.098658 1.851 0.06424 .
## ----
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
      Null deviance: 138.76 on 239 degrees of freedom
##
## Residual deviance: 121.24 on 236 degrees of freedom
## AIC: 450.3
##
## Number of Fisher Scoring iterations: 5
```

- 1. Y is count (e.g. claim count): Poisson distribution
 - $\log: g(\mu) = \log(\mu) = X * \beta$

coef(poisson_reg)

(Intercept) age num_car family_size
-0.5040411 -0.0136992 0.2776940 0.1825675

str(poisson_reg)

```
## List of 30
## $ coefficients : Named num [1:4] -0.504 -0.0137 0.2777 0.1826
## ..- attr(*, "names")= chr [1:4] "(Intercept)" "age" "num car" "family size"
## $ residuals
                      : Named num [1:240] 0.337 0.642 -1 0.642 0.037 ...
## ..- attr(*, "names")= chr [1:240] "1" "2" "3" "4" ...
## $ fitted.values : Named num [1:240] 0.748 0.609 0.609 0.609 0.964 ...
## ..- attr(*, "names")= chr [1:240] "1" "2" "3" "4" ...
## $ effects
                      : Named num [1:240] 4.192 -2.739 2.625 1.851 -0.133 ...
## ..- attr(*, "names")= chr [1:240] "(Intercept)" "age" "num_car" "family_size" ...
## $ R
                      : num [1:4, 1:4] -12.8 0 0 0 -513.7 ...
## ..- attr(*, "dimnames")=List of 2
##
  ....$ : chr [1:4] "(Intercept)" "age" "num car" "family size"
  ....$ : chr [1:4] "(Intercept)" "age" "num car" "family size"
##
##
                      : int 4
   $ rank
## $ qr
                      :List of 5
## ..$ qr : num [1:240, 1:4] -12.8063 0.0609 0.0609 0.0609 0.0767 ...
    ...- attr(*, "dimnames")=List of 2
##
```

34

1

2

1. Y is count (e.g. claim count): Poisson distribution log: g(μ) = log(μ) = X * β

1.50.50		-	-								
##			1	2		3	-	4		5	
##	0	.336915	66 0.641	189857	-1.000	00000	0.6	4189857	0	.03702878	2.329092
hea	d (po	oisson_re	g\$fitted.va	alues)							
##		1		2	3		4		5	6	;
##	0.	7479903	0.609051	LO 0.60	90510	0.6090	510	0.96429	34	0.6007644	
hea	d (pc	oisson_re	g\$data)								
##		clm age	num_car	family	_size						
##	1	1 18	1		1						
	2	1 33	1		1						
##	4										

1

1. Y is count (e.g. claim count): Poisson distribution log: g(μ) = log(μ) = X * β

```
poisson_reg2 <- glm(clm~ age+num_car, data = clm_cnt, family = poisson)
summary(poisson_reg2)</pre>
```

```
##
## Call:
## glm(formula = clm ~ age + num car, family = poisson, data = clm cnt)
##
## Deviance Residuals:
##
      Min
                10 Median
                                  30
                                         Max
## -1.2997 -0.9575 0.1825 0.3976 1.7579
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.24811 0.23422 -1.059 0.28947
## age
              -0.01284 0.00425 -3.022 0.00251 **
## num car 0.27717 0.10406 2.663 0.00773 **
## ----
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
      Null deviance: 138.76 on 239 degrees of freedom
##
  Residual deviance: 124.50 on 237 degrees of freedom
##
  AIC: 451.57
##
##
## Number of Fisher Scoring iterations: 5
```

Alternative distribution and link function

##	1	din.	1st Qu.	Median	Mean	3rd Qu.	Max.
##	0.0	0000	0.0000	1.0000	0.6833	1.0000	2.0000
##							
##	0	1	2				

2. Y is binary (e.g., loss or no loss): Bernoulli distribution logit: $g(\mu) = ln(\mu/(1-\mu)) = X * \beta$

```
clm_cnt$clm_cap <- ifelse(clm_cnt$clm==0,0,1)
logistic_reg <- glm(clm_cap~ age+num_car+family_size, data= clm_cnt, family = binomial)
summary(logistic_reg)</pre>
```

2. Y is binary (e.g., loss or no loss): Bernoulli distribution logit: g(μ) = ln(μ /(1- μ)) = X * β

```
##
## Call:
## glm(formula = clm cap ~ age + num car + family size, family = binomial,
##
      data = clm cnt)
##
## Deviance Residuals:
      Min
                10 Median
##
                                        Max
                                 30
## -2.1227 -0.8019 0.3648 0.7832 1.9362
##
## Coefficients:
##
         Estimate Std. Error z value Pr(> z )
## (Intercept) -0.504757 0.631501 -0.799 0.424117
      -0.056771 0.009853 -5.762 8.32e-09 ***
## age
## num car 1.772574 0.374012 4.739 2.14e-06 ***
## family size 0.998410 0.258047 3.869 0.000109 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 306.89 on 239 degrees of freedom
##
## Residual deviance: 232.63 on 236 degrees of freedom
## AIC: 240.63
##
## Number of Fisher Scoring iterations: 5
```

Model Selection

AIC = 2 * k - 2 * In(L)

k = the number of parameter

L = the maximized value of the likelihood function of the model M, p(x|M, Beta)

AIC(poisson_reg)

[1] 450.3045

AIC(poisson_reg2)

[1] 451.5671

AIC(logistic_reg)

[1] 240.6336

Model Selection

BIC = k * In(n) - 2 * In(L)

k = the number of parameter

L = the maximized value of the likelihood function of the model M,

p(x|M, Beta)

n = the number of observations

Reference

https://en.wikipedia.org/wiki/Generalized linear model#Link function https://stat.ethz.ch/R-manual/R-devel/library/stats/html/glm.html

