Easy Tree-sy

Everyday Applications of Decision Trees

CAS Ratemaking and Product Management

San Diego, CA

March 2017

Linda Brobeck lbrobeck@pinnacleactuaries.com
Peggy Brinkmann peggy.brinkmann@milliman.com
Daniel Murphy dmurphy@trinostics.com

Antitrust Statement

- The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the antitrust laws. Seminars conducted under the auspices of the CAS are designed solely to provide a forum for the expression of various points of view on topics described in the programs or agendas for such meetings.
- Under no circumstances shall CAS seminars be used as a means for competing companies or firms to reach any understanding expressed or implied - that restricts competition or in any way impairs the ability of members to exercise independent business judgment regarding matters affecting competition.
- It is the responsibility of all seminar participants to be aware of antitrust regulations, to prevent any written or verbal discussions that appear to violate these laws, and to adhere in every respect to the CAS antitrust compliance policy.

Introductions and Agenda

- Decision Tree Basics
- An Example
- Terminology
- Objectives/Theory
- Applications of Decision Trees
- Case Study using Free Software
- Customization

An Example

Estimate the height of an adult, given the following information:

- Age
- Weight
- Gender
- Marital Status
- Zip Code
- Hair Color
- Shoe Size

Terminology

Target Response, Predicted Outcome, Dependent Variable Y: Height

Explanatory, Predictor, Independent Variables
X_{i} : Age, Gender, Marital Status Zip Code, Hair Color, Shoe Size

If the Target Variable is:
Categorical
\rightarrow Classification Tree
Continuous
\rightarrow Regression Tree

Objectives/Theory

Two Objectives:

Purity

\rightarrow Measure of variation
Parsimony
\rightarrow Desire for simple

The Process

> Splitting Procedure

The domain space of explanatory variables
$X_{1}, \ldots X_{n}$ is split into two subsets where observed
values in X_{j} belong to one of the subsets
i.e. <s or >=s OR $s_{1}=$ male $s_{2}=$ female

Improvement Value

The dimensions \boldsymbol{j} and \boldsymbol{s} above are chosen to minimize the error in the prediction among all such binary (two-leveled) trees. Process is iterated.

Stopping Criterion

$>$ No stopping criterion
$>$ Minimum leaf (node) size
$>$ Maximum number of levels or splits
$>$ Let data determine the stopping criterion (see Appendix)

Validating Results - Avoiding Over Fit

The validation dataset ensures a way to accurately measure your model's performance.

Validating Results - Avoiding Over Fit

Large datasets can be split into 3 unique subsets.

If there is time...

Appendix

Stopping Criterion - Regression Trees

- To begin, we need to define an error function $E()$ on any leaf of a tree. Think of $E()$ as a measure of how far the predicted are from observed
- Then, for a fixed $\alpha>0$, find that tree T that minimizes

$$
C_{\alpha}(|T|)=\sum_{k=1}^{|T|} E\left(L_{k}\right)+\alpha|T|
$$

- $E\left(L_{k}\right)$ is the error contributed by the k th leaf and α is a parameter that rewards parsimony
- One can see that minimizing the cost complexity criterion $C_{\alpha}()$ requires a balance between predictive power and parsimony to be struck

Stopping Criterion - Regression Trees (cont.)

- Define

$$
\begin{aligned}
& \text { 1. }\left|L_{k}\right|=\sum_{\substack{i=1 \\
x_{i} \in L_{k}}}^{K} w_{i} \\
& \text { 2. } \bar{y}_{k}=\frac{1}{\left|L_{k}\right|} \sum_{\substack{i=1 \\
x_{i} \in L_{k}}}^{K} w_{i} y_{i}
\end{aligned}
$$

- A standard choice for $E()$ is

$$
E\left(L_{k}\right)=\sum_{\mathbf{x}_{i} \in L_{k}} w_{i}\left(y_{i}-\bar{y}_{k}\right)^{2}
$$

- There are other standard functions for E (), for example

1. $E\left(L_{k}\right)=\sum_{\mathrm{x}_{i} \in L_{k}} w_{i}\left|y_{i}-\bar{y}_{k}\right|$
2. $E\left(L_{k}\right)=\sum_{x_{i} \in L_{k}} w_{i}\left|y_{i}-\bar{y}_{k}\right|^{p}$ for $1<p<2$

- User may have choice on what functional form $E()$ may take depending on the software

Bibliography

- Hastie, T. et al. (2011) The Elements of Statistical Learning:

Data Mining, Inference, and Prediction (2nd Edition), Springer, New York.

