
Open Source Text
Mining

Mathew Flynn, PhD
Louise Francis, FCAS, MAAA

Rationale For Paper

Text mining is a promising technology for
analyzing unstructured text data
Commercial text mining software can be
expensive and difficult to learn
Several free open source languages can
perform text mining, but without help thay can be
difficult to learn
In this session we will introduce 2 open source
products and mention a third

Two Open Source Products for Text
Mining

R – a statistical and analytical language
with text mining functionality provided by a
text mining package tm along with other
packages that provide additional capability
Python – a n analytical language used by
computer scientists, data scientists and
engineers.
Perl – Historically recognized for its string
processing capabilities

The Data

Text mining can be applied to many common
tasks
 Internet searches
 Screening emails for spam
 Analyzing free form fields in underwriting and claims

files
 Analyzing survey data

We illustrate the last 2
Accident description field in a claim file
Survey data can from a 2008 CAS quinquennial
survey.

Mini Tutorial

We will give tutorial on using R and Python
for Various aspects of text mining
We give a brief background on Perl
We introduce the data
Follow our examples

The Survey Data

From 2008 CAS Quinquennial Survey
What are the top two issues that will
impact the CAS in the next five years?

 Survey Question: Top Two Issues Affecting CAS
A crisis that could affect our ability to "regulate" ourselves.
A need to deal more thoroughly with non-traditional risk management approaches
Ability of members to prove they are more than just number crunchers
ability to convince non-insurance companies of the value/skills offered by CAS
members.

We Begin with Perl

We begin with Perl to illustrate key text
mining concepts and procedures
Go to www.Perl.org to download
Our “Open Source Text Mining” paper
made heavy use of Perl (find at
www.casact.org)
Much of the analytics community now
uses Python instead of Perl

http://www.perl.org/

www.Perl.org

Text Mining Steps

Data Preprocessing
 Clean data: remove misspellings, punctuation,

numbers, convert to lower case
 Split individual words from spaces, punctuation
 Remove stop words
 Create document term matrix with results

Data Exploration
Use analytic techniques to derive meaning
Use for prediction

Parsing Text

Identify the spaces, punctuation and other
non alphanumeric characters found in text
documents and separating the words from
these other characters
Most computer languages (and
spreadsheets) have text functions that
perform the search and substring functions
to do this
Perl has special functions for parsing text

The split function

split(/separating character(s)/, string)
Example
 $Response = "Ability of members to prove

they are more than just number crunchers";
 @words =split (/ /, $Response);

Complications of split function

More than one space
 @words =split (/ [\s+]/, $Response);

Other separators
 Use substitute function

Regular Expressions

A language for string pattern description
There can be some variations across
languages such as Perl, Python, R
There are various shorthand characters to
denote types of strings including
‘/d for digit
/b for blank at beginning of a word
/w for an alphanumeric character
/^ at beginning denotes beginning of string

Simple parse program: Parse2.pl

#!perl -w
Parse2.pl
Program to parse text string using one or more spaces
as separator
The split function uses a Regular Expression (\s+) to
capture one or more spaces
$Response = "Ability of members to prove they are
more than just number crunchers";
@words =split (/\s+/, $Response); #parse words in string
Loop through words in word array and print them
foreach $word (@words) {
print "$word\n";
}

Less Simple parse program:
Parse3.pl

#!perl -w
Parse3.pl
Program to parse a sentence and remove punctuation
$Test = "A crisis that could affect our ability to 'regulate' ourselves.";#
a test string with punctuation
@words =split (/[\s+]/, $Test); # parse the string using spaces
Loop through words to find non punctuation characters
foreach $word (@words) {
while ($word =~ /(\w+)/g) {
match by 1 or more alphanumeric characters. These will be the
words excluding punctuation
print "$1 \n"; #print the first match which will be the word of
alphanumeric characters
}
}

Read in survey data and parse
#!perl -w
Enter file name withtext data here
$TheFile =“Top2Iss.txt";
open the file
open(INFILE, $TheFile) or die "File not found";
read in one line at a time
while(<INFILE>) {
 chomp; # eliminate end of line charachter
 s/[.?!"()'{},&;]//g; # replace punctuation with null
 s/\// /g; # replace slash with space
 s/\-//g; #replace dash with null
 s/^ //g; #replace beginning of line space
 print "$_\n"; # print cleaned line out
 @word=split(/[\s+]/); # parse line
 }

Word Search

First, read in the data
For each claim
 Read in each word
 If the lower case of the target word is found

output a 1 for the new indicator variable,
otherwise output a 0.

SearchTarget.pl
SearchTarget.pl
$target = “(regulaton)";
initialize file variable containing file with text data
$TheFile =“Top2Iss1.txt";
open(INFILE, $TheFile) or die "File not found"; # open the file
initialize identifier variables used when search is successful
$i=0;
$flag=0;
read each line
while(<INFILE>) {
 chomp;
++$i;
put input line into new variable
$Sentence = $_;
parse line of text
@words = split(/[\s+]/,$Sentence);
$flag=0;
foreach $x (@words) {
if (lc($x) =~ /$target/) {
$flag=1;
 }
}
print lines with target variable to screen
print "$i $flag $Sentence \n";
}

Stop Words

Frequently occurring words
The
A
To
It
Do not contribute to meaning of record of
text
Eliminate

Substitution operator

Thus to eliminate the word “the”, use the
code

 s/the//g;
Apply to multiple terms you want to
eliminate

 s/[-.?!"()'{}&;]//g;

Term Document Matrix

A Table of indicator variables
Cycle through every record in the data
And every word found at least once
If a word is present, a 1, otherwise a 0

Term Data Matrix

Ourselves cas Not That communicators/executive our approaches
1 0 0 1 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

Stopwords.pl
StopWords.pl
This program eliminates stop words and computes the term-document matrix
a key part is to tabulate the indicator/count of every term - usually a word
it may then be used to find groupings of words that create content
This would be done in a separate program
Usage: termdata.pl <datafile> <outputfile>
$TheFile = "Top2Iss.txt";
#$Outp1 = "OutInd1.txt";
open(MYDATA, $TheFile) or die("Error: cannot open file");
open(OUTP1, ">OutInd1.txt") or die("Cannot open file for writing\n");
open(OUTP2, ">OutTerms.txt") or die("Cannot open file for writing\n");
read in the file each line and create hash of words
create grand dictionary of all words
initialize line counter
 $i=0;
while (<MYDATA>){
 chomp($_);
 s/[-.?!"()'{}&;]//g;
 s/^ //g;
 s/,//g;
 s/\d/ /g;
 s/(\sof\s)/ /g;
 s/(\sto\s)/ /g;
 s/(\sthe\s)/ /g;
 s/(\sand\s)/ /g;
 s/(\sin\s)/ /g;
 s/(The\s)/ /g;
 s/(\sfor\s)/ /g;
 s/(\as\s)/ /g;
 s/(A\s)/ /g;
 s/(\sin\s)/ /g;
 s/(\swith\s)/ /g;
 s/(\san\s)/ /g;
 s/(\swith\s)/ /g;
 s/(\sare\s)/ /g;

Stopwords.pl cont.
 s/(\sthey\s)/ /g;
 s/(\sthan\s)/ /g;
 s/(\sas\s)/ /g;
 s/(\sby\s)/ /g;
 s/\s+/ /g;
 if (not /^$/) { #ignore empty lines
 @words = split(/ /);
 foreach $word (@words) {
 ++$response[$i]{lc($word)};
 ++$granddict{lc($word)};
 }
 ++$i;
 }
}
$nlines = $i-1;
for $i (0..$nlines) {
 foreach $word (keys %granddict) {
 if (exists($response[$i]{$word}))
 {
 ++$ indicator[$i]{$word}; }
 else
 {
 $indicator[$i]{$word}=0;
 }
print OUTP1 "$indicator[$i]{$word},";
 }
 print OUTP1 "\n";
}
foreach $word (keys %granddict) {
 print OUTP2 "$word,$granddict{$word}\n";
 }
close the files
close MYDATA;
close OUTP1;
close OUTP2;

OutPut Matrix

1 0 0 1 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

	Open Source Text Mining
	Rationale For Paper
	Two Open Source Products for Text Mining
	The Data
	Mini Tutorial
	The Survey Data
	We Begin with Perl
	www.Perl.org
	Text Mining Steps
	Parsing Text
	The split function
	Complications of split function
	Regular Expressions
	Simple parse program: Parse2.pl
	Less Simple parse program: Parse3.pl
	Read in survey data and parse
	Word Search
	SearchTarget.pl
	Stop Words
	Substitution operator
	Term Document Matrix
	Term Data Matrix
	Stopwords.pl
	Stopwords.pl cont.
	OutPut Matrix

