

Building predictive models is a multi-step process

- Ernesto walked us through the first 3 components
- We will now go through an example of the remaining steps:
 - Building component predictive models
 - We will illustrate how to build a frequency model
 - Validating component models
 - We will illustrate how to validate your component model
 - We will also briefly discuss combining models and incorporating implementation constraints
 - Goal should be to build best predictive models now and incorporate constraints later

Building component predictive models can be separated into two steps

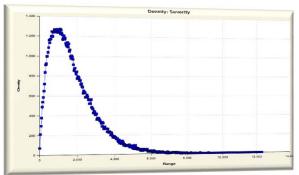
- Initial Modeling
 - Selecting error structure and link function
 - Build simple initial model
 - Testing basic modeling assumptions and methodology
- Iterative modeling
 - Refining your initial models through a series of iterative steps complicating the model, then simplifying the model, then repeating

Initial Modeling

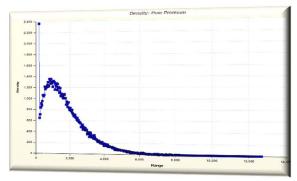
- Initial modeling is done to test basic modeling methodology
 - Is my link function appropriate?
 - Is my error structure appropriate?
 - Is my overall modeling methodology appropriate (e.g. do I need to cap losses?
 Exclude expense only claims? Model by peril?)

Examples of error structures

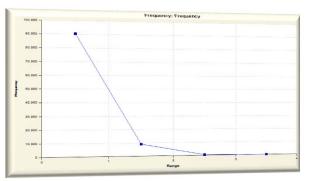
Error functions reflect the variability of the underlying process and can be any distribution within the exponential family, for example:



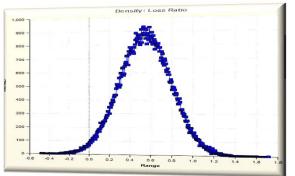
 Gamma consistent with severity modeling; may want to try Inverse Gaussian



Tweedie consistent with pure premium modeling



Poisson consistent with frequency modeling



Normal useful for a variety of applications

Generally accepted error structure and link functions

Use generally accepted standards as starting point for link functions and error structures

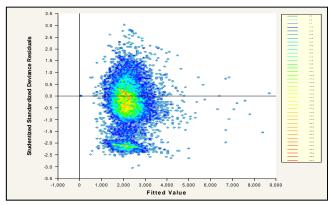
Observed Response	Most Appropriate Link Function	Most Appropriate Error Structure	Variance Function
	-	Normal	μ ⁰
Claim Frequency	Log	Poisson	μ^1
Claim Severity	Log	Gamma	μ²
Claim Severity	Log	Inverse Gaussian	μ^3
Pure Premium	Log	Gamma or Tweedie	μ^{T}
Retention Rate	Logit	Binomial	μ(1-μ)
Conversion Rate	Logit	Binomial	μ(1-μ)

Build an initial model

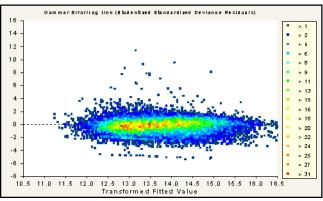
- Reasonable starting points for model structure
 - Prior model
 - Stepwise regression
 - General insurance knowledge
 - CART (Classification and Regression Trees) or similar algorithms

Test model assumptions

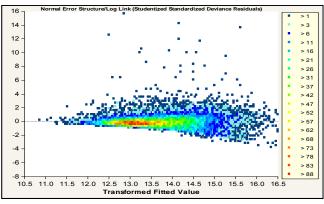
Plot of all residual tests selected error structure/link function



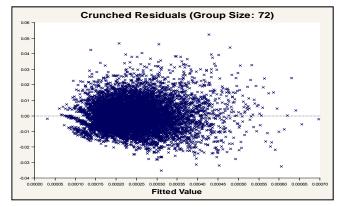
Two concentrations suggests two perils: split or use joint modeling



Elliptical pattern is ideal



Asymmetrical appearance suggests power of variance function is too low

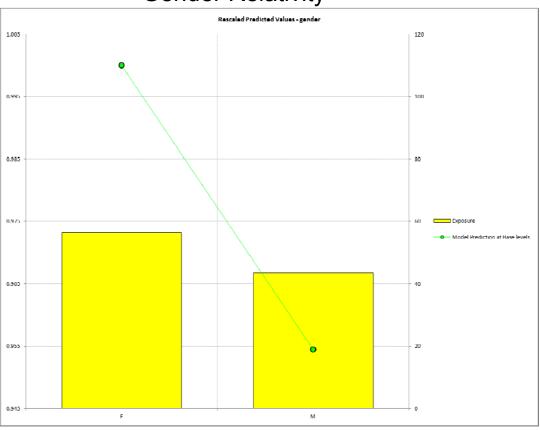


Use crunched residuals for frequency

Link function: Log

Error structure: Poisson

- Initial variable selected based on industry knowledge:
 - Gender
 - Driver age
 - Vehicle value
 - Area (territory)
- Variable NOT in initial model:
 - Vehicle body
 - Vehicle age

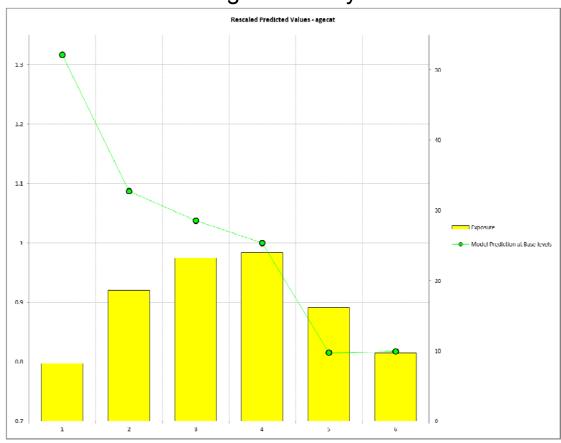


Link function: Log

Error structure: Poisson

- Initial variable selected based on industry knowledge:
 - Gender
 - Driver age
 - Vehicle value
 - Area (territory)
- Variable NOT in initial model:
 - Vehicle body
 - Vehicle age

Driver Age Relativity

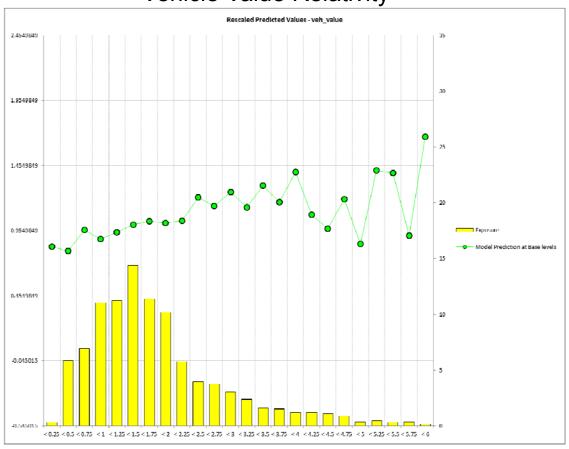


Link function: Log

Error structure: Poisson

- Initial variable selected based on industry knowledge:
 - Gender
 - Driver age
 - Vehicle value
 - Area (territory)
- Variable NOT in initial model:
 - Vehicle body
 - Vehicle age

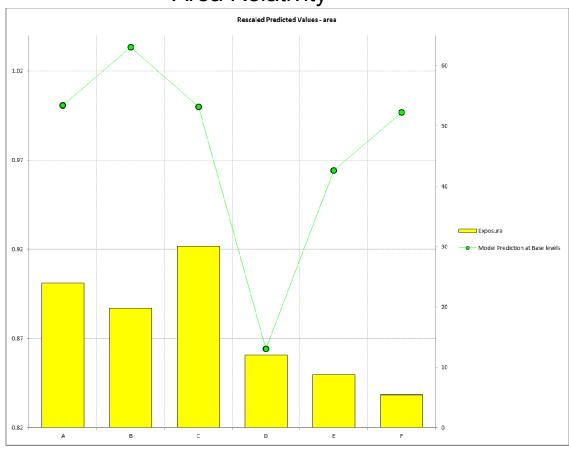
Vehicle Value Relativity



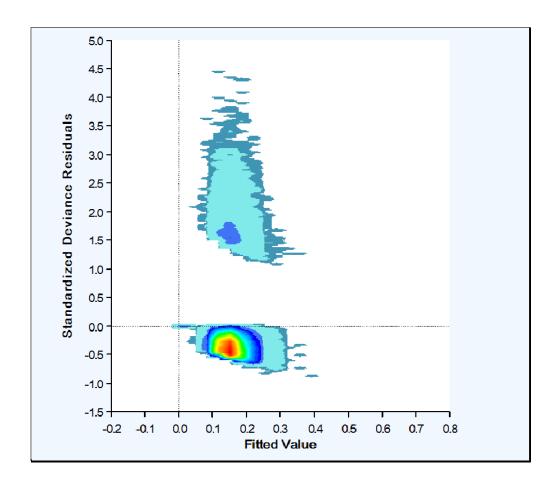
Link function: Log

Error structure: Poisson

- Initial variable selected based on industry knowledge:
 - Gender
 - Driver age
 - Vehicle value
 - Area (territory)
- Variable NOT in initial model:
 - Vehicle body
 - Vehicle age



Example: initial frequency model - residuals

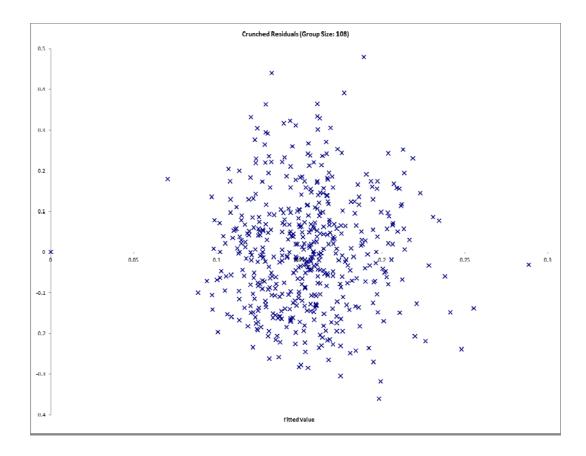


- Frequency residuals are hard to interpret without 'Crunching'
- Two clusters:
 - Data points with claims
 - Data points without claims

© 2017 Willis Towers Watson. All rights reserved.

Willis Towers Watson Villis Towers Watson. All rights reserved.

Example: initial frequency model - residuals



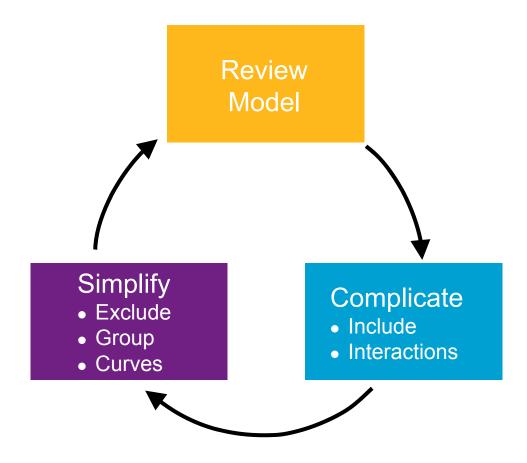
- Order observations from smallest to largest predicted value
- Group residuals into 500 buckets
- The graph plots the average residual in the bucket
- Crunched residuals look good!

Building component predictive models can be separated into two steps

- Initial Modeling
 - Selecting error structure and link function
 - Build simple initial model
 - Testing basic modeling assumptions and methodology
- Iterative modeling
 - Refining your initial models through a series of iterative steps complicating the model, then simplifying the model, then repeating

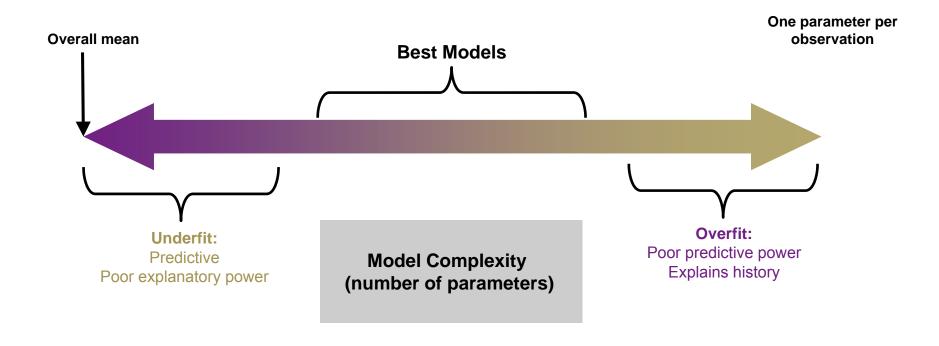
Iterative Modeling

- Initial models are refined using an iterative modeling approach
- Iterative modeling involves many decisions to complicate and simplify the models
- Your modeling toolbox can help you make these decisions
 - We will discuss your tools shortly



Ideal Model Structure

 To produce a sensible model that explains recent historical experience and is likely to be predictive of future experience

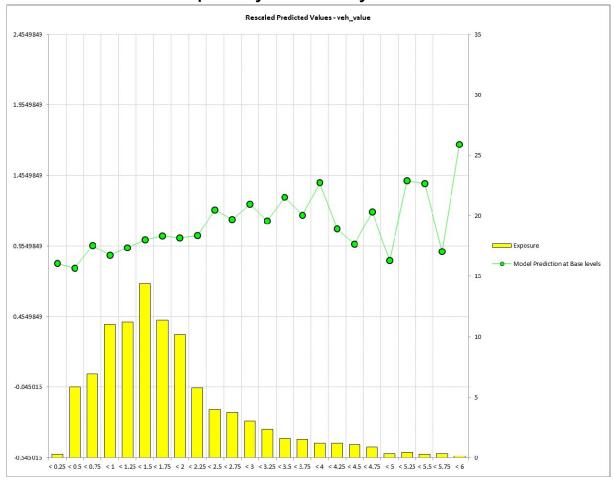


Your modeling tool box

- Model decisions include:
 - Simplification: excluding variables, grouping levels, fitting curves
 - Complication: including variables, adding interactions
- Your modeling toolbox will help you make these decisions
 - Your tools include:
 - Judgment (e.g., do the trends make sense?)
 - Balance tests (i.e. actual vs. expected test)
 - Parameters/standard errors
 - Consistency of patterns over time or random data sets
 - Type III statistical tests (e.g., chi-square tests, F-tests)

Modeling toolbox: judgment

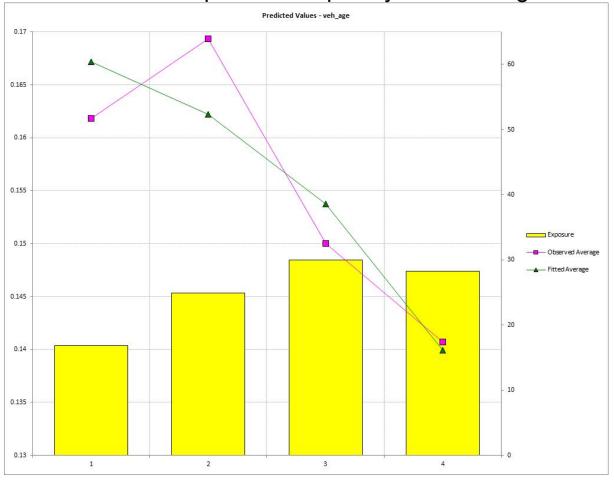
Modeled Frequency Relativity – Vehicle Value



- The modeler should also ask, 'does this pattern make sense?'
- Patterns may often be counterintuitive, but become reasonable after investigation
- Uses:
 - Inclusion/exclusion
 - Grouping
 - Fitting curves
 - Assessing interactions

Modeling toolbox: balance test

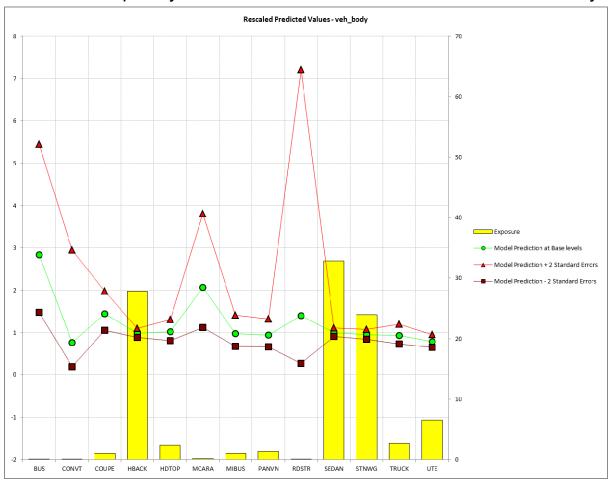
Actual vs. Expected Frequency - Vehicle Age



- Balance test is essentially an actual vs. expected
- Can identify variables that are not in the model where the model is not in 'balance'
 - Indicates variable may be explaining something not in the model
- Uses:
 - Inclusion

Modeling toolbox: parameters/standard errors

Modeled Frequency Relativities With Standard Errors - Vehicle Body



 Parameters and standard errors provide confidence in the pattern exhibited by the data

Uses:

- Horizontal line test for exclusion
- Plateaus for grouping
- A measure of credibility

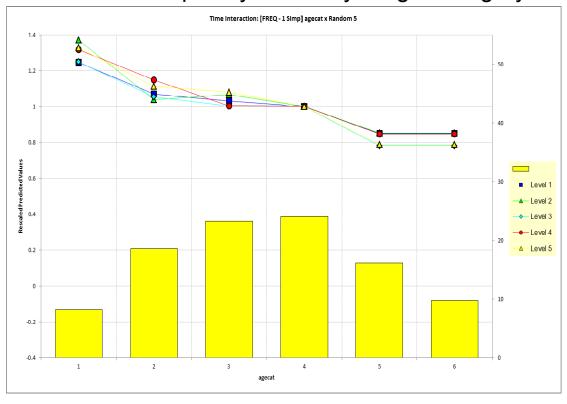
Modeling toolbox: consistency of patterns

 Checking for consistency of patterns over time or across random parts of a data set is a good practical test

Uses:

- Validating modeling decisions
 - Including/excluding factors
 - Grouping levels
 - Fitting curves
 - Adding Interactions

Modeled Frequency Relativity – Age Category



Modeling toolbox: type III tests

- Chi test and/or F-Test is a good statistical test to compare nested models
 - H_o: Two models are essentially the same
 - H₁: Two models are not the same
 - Principle of parsimony: If two models are the same, choose the simpler model

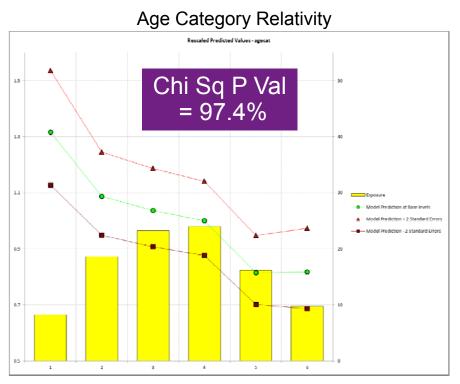
Uses:

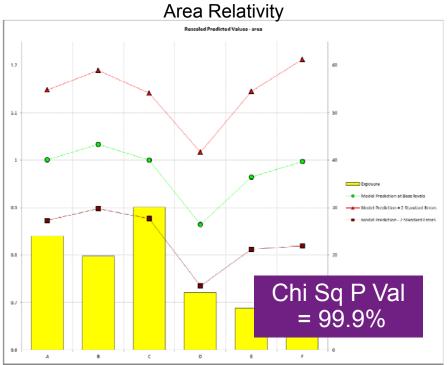
Inclusion/exclusion

Chi-Square Percentage	Meaning	Action*
<5%	Reject H _o	Use More Complex Model
5%-15%	Grey Area	???
15%-30%	Grey Area	???
>30%	Accept H _o	Use Simpler Model

Example: frequency model iteration 1 – simplification

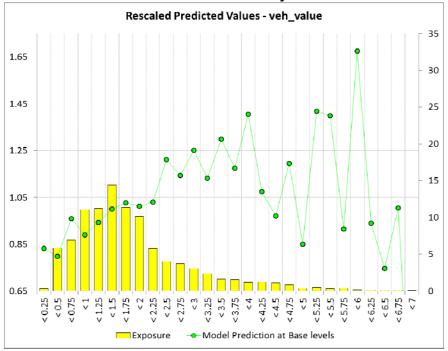
- Modeling decision: Grouping Age Category and Area
- Tools Used: judgment, parameter estimates/std deviations, type III test



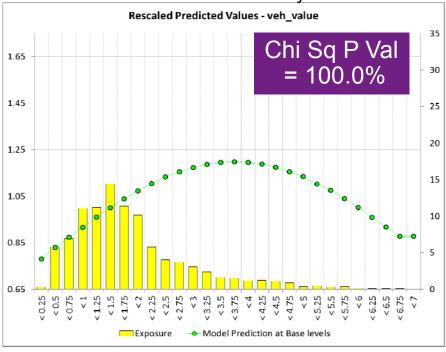


Example: frequency model iteration 1 – simplification

- Modeling decision: fitting a curve to vehicle value
- Tools used: judgment, type III test, consistency test



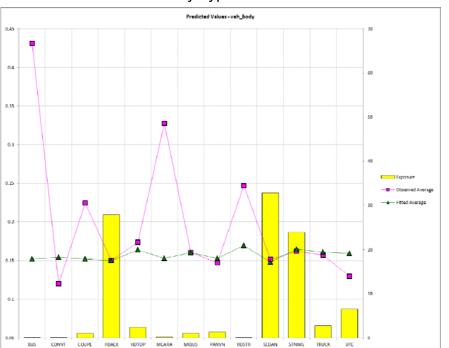
Vehicle Value Relativity – Curve Fit



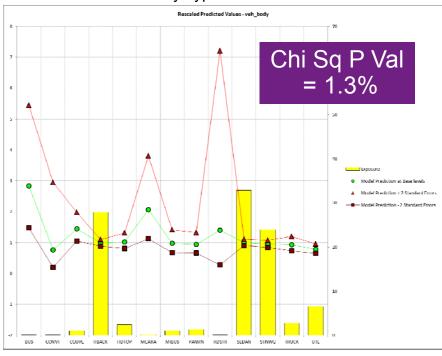
Example: frequency model iteration 2 – complication

- Modeling decision: adding vehicle body type
- Tools used: balance test, parameter estimates/std deviations, type III test

Balance Test:
Actual vs. Expected Across Vehicle Body Type
Vehicle Body Type Not In Model



Vehicle Body Type Relativities Vehicle Body Type Included in Model



© 2017 Willis Towers Watson. All rights reserved.

WillisTowers Watson 1.1111. 26

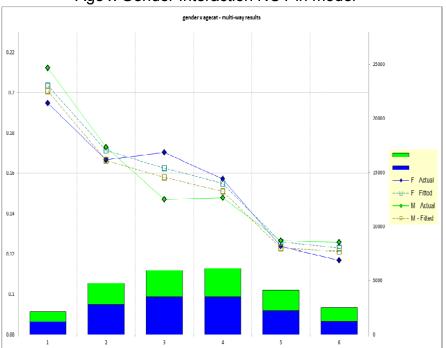
Example: iterative modeling continued....

- Iteration 3 simplification
 - Group vehicle body type
- Iteration 4 complication
 - Add vehicle age
- Iteration 5 simplification
 - Group vehicle age levels

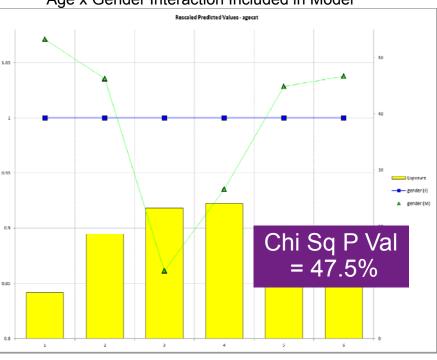
Example: frequency model iteration 6 – complication

- Action: adding age x gender interaction
- Tools used: balance test, type III test, consistency test, judgment

Balance Test:
Two Way Actual vs. Expected Across Age x Gender
Age x Gender Interaction NOT in model



Age x Gender Relativities Age x Gender Interaction Included in Model

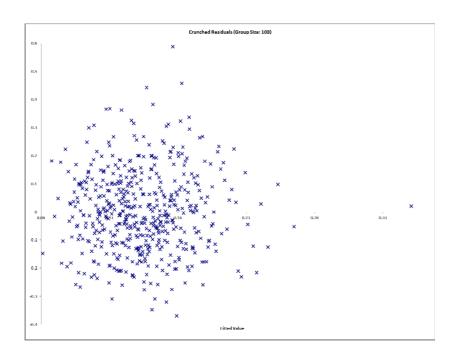


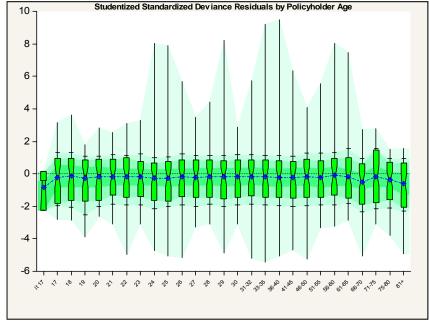
Predictive models must be validated to have confidence in the predictive power of the models

- Model validation techniques include:
 - Examining residuals
 - Examining gains curves
 - Examining hold out samples
 - Changes in parameter estimates
 - Actual vs. expected on hold out sample
- Component models and combined risk premium model should be validated

Model validation: residual analysis

Recheck residuals to ensure appropriate shape





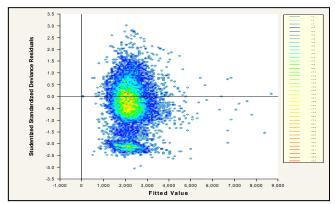
Crunched residuals are symmetric

For Severity - Does the Box-Whisker show symmetry across levels?

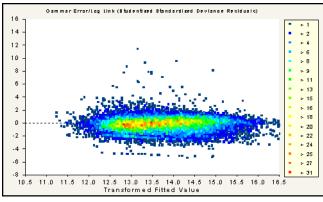
30

Model validation: residual analysis (cont'd)

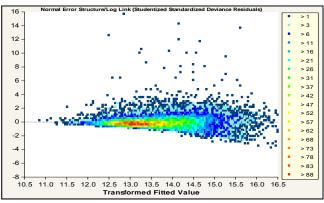
Common issues with residual plots



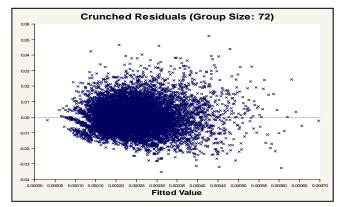
Two concentrations suggests two perils: split or use joint modeling



Elliptical pattern is ideal

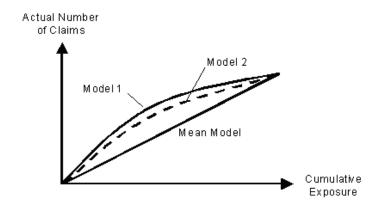


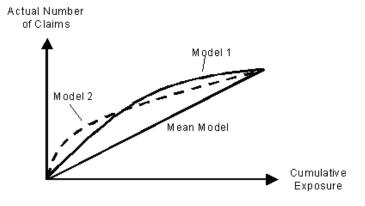
Asymmetrical appearance suggests power of variance function is too low



Use crunched residuals for frequency

Model validation: gains curves

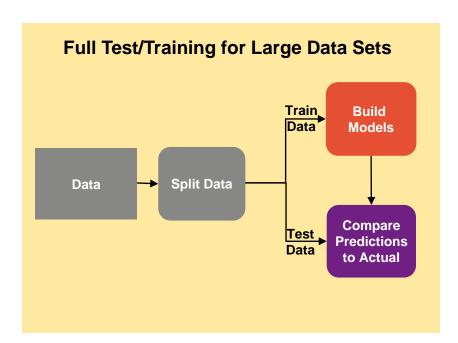


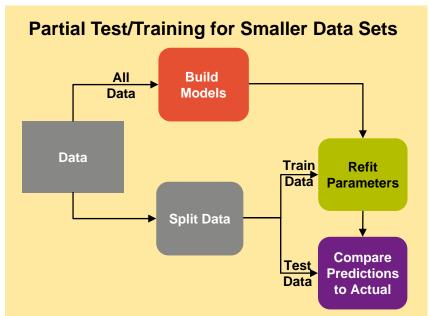


- Gains curve are good for comparing predictiveness of models
 - Order observations from largest to smallest predicted value on X axis
 - Cumulative actual claim counts (or losses) on Y axis
 - As you move from left to right, the better model should accumulate actual losses faster

Model validation: hold out samples

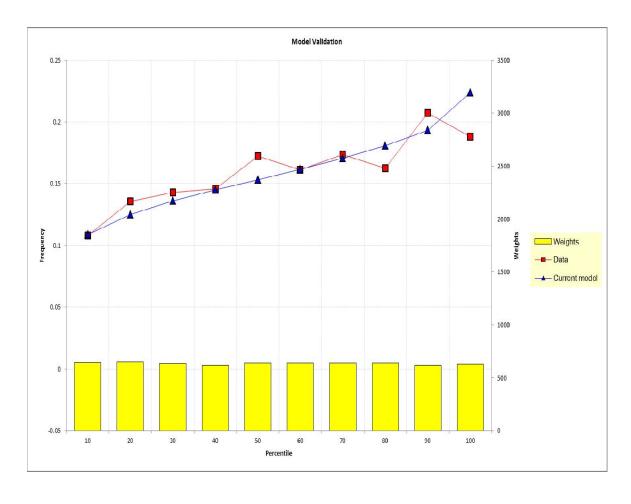
- Holdout samples are effective at validating models
 - Determine estimates based on part of data set
 - Uses estimates to predict other part of data set





Predictions should be close to actuals for heavily populated cells

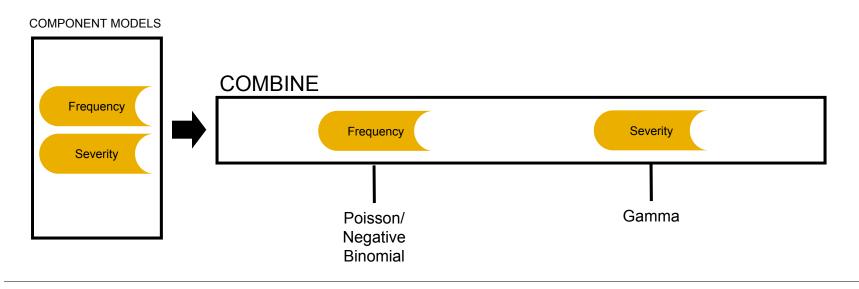
Model validation: lift charts on hold out data



- Actual vs. expected on holdout data is an intuitive validation technique
- Good for communicating model performance to non-technical audiences
- Can also create actual vs. expected across predictor dimensions

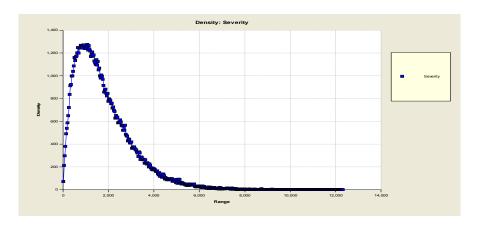
Component frequency and severity models can be combined to create pure premium models

- Component models can be constructed in many different ways
 - The standard model:

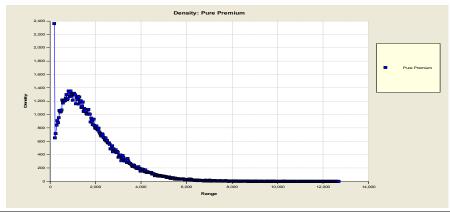


Building a model on modeled pure premium

When using modeled pure premiums, select the gamma/log link (not the Tweedie)



 Modeled pure premiums will not have a point mass at zero



 Raw pure premiums are bimodal (i.e., have a point mass at zero) and require a distribution such as the Tweedie

Various constraints often need to be applied to the modeled pure premiums

Goal: Convert modeled pure premiums into indications after consideration of internal and external constraints

- Not always possible or desirable to charge the fully indicated rates in the short run
 - Marketing decisions
 - Regulatory constraints
 - Systems constraints
- Need to adjust the indications for known constraints

Constraints to give desired subsidies

- Offsetting one predictor changes parameters of other correlated predictors to make up for the restrictions
 - The stronger the exposure correlation, the more that can be made up through the other variable
 - Consequently, the modeler should not refit models when a desired subsidy is incorporated into the rating plan

	Insurer-Desired Subsidy	Regulatory Subsidy	
Example	Sr. mgmt wants subsidy to attract drivers 65+	Regulatory constraint requires subsidy of drivers 65+	
Result of refitting with constraint	Correlated factors will adjust to partially make up for the difference. For example, territories with retirement communities will increase.		
Potential action	Do not refit models with constraint	Consider implication of refitting and make a business decision	