Advanced Predictive Modeling Workshop

Tree-based Methods

March 27, 2017 San Diego, CA

Kudakwashe Chibanda, FCAS, MAAA

kudakwashe.chibanda@pwc.com Jean-François Greeff, FASSA

jean.francois.greeff@pwc.com

Agenda

1. Decision trees

2. Ensembles

- 3. Classification examples
- 4. Regression examples

Decision trees

"If you dream of a forest, you better learn how to plant a tree"

Introduction

Features

- Non-parametric classification/regression tools
- Create splits according to measures of homogeneity

Advantages

- Simple to understand and interpret
- Flexible for non-linear or complex relationships

Disadvantages

- Overfitting
- Unstable/Biased if certain classes of data dominate

Splitting Criteria

- Entropy measures the *disorderliness* for each variable level
- The *purer* the level for a given response, the more *predictable* the outcome
- The weighted average entropy across all levels of a variable gives us information
- Gini impurity is a purity measure that relies on *misclassification*
- It measures the probability that a randomly selected observation will be placed in the wrong bucket (i.e. misclassified)

- A large number of observations in a level can *bias* the information towards the entropy of the concentrated level
- To compensate, *Intrinsic Information* is calculated
- II takes size and number of levels into account i.e. penalizes large values/splits
- Gain Ratio = $\frac{Information Gain}{Intrinsic Information}$
- *p-values of Chi-Square* statistics can be used to split nodes
- Measure statistical significance of a variable's levels and the response (i.e. test *null hypothesis of independence*)
- Insignificant splits are merged while significant ones are tested for further splits

Purity Measures Calculations

Outlook	Yes	No	Total
(x variable)	(y var	iable)	(by level)
Sunny (node i)	3	2	5
Overcast	4	0	4
Rainy	20	30	50
Total (t branch)	27	32	59

Information Gain and Gini also take purity at the branch (regardless of splits) into account IG measures increase in purity from having no splits [I(t)] to having c splits

Entropy/ Information measure purity of outcomes at each node, taking number and size of nodes into account

- Information Gain [(IG(t)] = I(t) H(t)] $IG(t) = -\left(\frac{27}{59}\log\left(\frac{27}{59}\right) + \frac{32}{59}\log\left(\frac{32}{59}\right)\right) - 0.905 = 0.09$
- Intrinsic Information[II(t)] = $II(t) = -\left(\frac{5}{59}\log\left(\frac{5}{59}\right) + \frac{4}{59}\log\left(\frac{4}{59}\right) + \frac{50}{59}\log\left(\frac{50}{59}\right)\right) = 0.767$

- Entropy $\left[H_y(i)\right] = -\sum_y p(y|i) \log(y|i)$ Entropy(sunny) $= -\left(\frac{3}{5}\log\left(\frac{3}{5}\right) + \frac{2}{5}\log\left(\frac{2}{5}\right)\right) = 0.971$
- Information $[H(t)] = -\sum_{i=0}^{c-1} p(i)H_y(i)$ $H(Outlook) = \frac{5}{59} * 0.971 + \frac{4}{59} * 0 + \frac{50}{59} * 0.971 = 0.905$

- Gain Ratio $[(GR(t)] = \frac{IG(t)}{II(t)}$ $GR(t) = \frac{0.09}{0.767} = 0.117$
- $Gini[(G(t)] = 1 \sum_{y} p(i|t)^{2}$ (prior to split) $G(t) = 1 - [\left(\frac{27}{32}\right)^{2} + \left(\frac{32}{59}\right)^{2}] = 0.496$

6

PwC

Receiver Operating Characteristic (ROC)

- To measure predictive performance in binary classifier models, we rely on *confusion matrices*
- Using a selected *threshold*, we can bucket observations into each one of the four buckets as shown in the table
- Receiver Operator Curves (ROC) are commonly used to select a threshold
 - By plotting relationship between TPR and FPR, we can determine the point that *maximizes TPR while minimizing FPR*
 - We can also summarize the information by calculating *Area Under Curve (AUC)*

	Pred	icted	
ctual	True	False	True Positive Rate
	Positive	Negative	(Sensitivity):
	(TP)	(FN)	$TPR = \frac{TP}{TP + FN}$
A	False	True	False Positive Rate (Fall-
	Positive	Negative	out):
	(FP)	(TN)	$FPR = \frac{FP}{FP + TN}$

Types of Trees – ID3 and C4.5

- Purity measure: Entropy
- *Methodology:* at each node, calculate entropy for all variables. Select variable with minimum entropy
- *Splits*: can have multiple splits
- *Continuous/missing data*: no
- *Risks*: does not *prune*
 - *Fix*: use **stopping criteria** to avoid overfitting

- Purity measure: Information Gain
- *Methodology & splits:* similar to ID3
- Continuous/missing data: yes
- *Risks*: susceptible to *outliers*
 - *Fix*: remove outliers

Classification And Regression Trees (CART)

Classification Trees

- Purity measure: Gini impurity
- *Methodology:* at each node, calculate gini for all variables. Select split with minimum gini
- Splits: **binary**
- Continuous data: requires splitting
- *Risks*: does not work for *multiple category* data
 - *Fix*: use CHAID/ID3

Regression Trees

- Purity measure: Variance reduction
- *Methodology:* For each variable, the split is determined by the point that *minimizes SSE*
- Continuous/missing data: yes
- Risks: overfitting
 - *Fix*: *prune* using Sum of Square Errors (SSE)

PwC

Classification Example

Ensembles

Weak Learners and Strong Classifiers

Illustration of Ensembling (1)

Situation

- Transmit binary signal from A to B
- Ensure that signal uncorrupted

Ensemble approach

- Use 3 independent signal carriers
- Majority vote (Choose bits where 2+ of three carriers agree)

Consequence

 Reconstruct signal with reduced error

	Signal	Accuracy
Original signal	0100101001000110	
Signal 1	0100 <mark>0</mark> 01001000110	93.75%
Signal 2	0100101001000111	93.75%
Signal 3	010010 <mark>01</mark> 01000110	87.5%
Combined Signal	0100 <mark>1010</mark> 0100011 <mark>0</mark>	100%
	Signal	Accuracy
Original signal	Signal 0100101001000110	Accuracy
Original signal Signal 1	Signal 0100101001000110 0100000101010101	Accuracy 60.00%
Original signal Signal 1 Signal 2	Signal 0100101001000110 0100000101010101 0000111000111110	Accuracy 60.00% 60.00%
Original signal Signal 1 Signal 2 Signal 3	Signal 0100101001000110 0100000101010101 0000111000111110 010000000010010	Accuracy 60.00% 60.00% 66.67%

Illustration of Ensembling (2)

- 3 signals with probability of corruption 30% per bit
 - P(All correct) = 0.7³ = 34.29%
 P(2 correct) = 3 × (0.7² × 0.3) = 44.09%
 P(1 correct) = 3 × (0.7¹ × 0.3²) = 18.90%
 P(None correct) = 0.3³ = 2.70%
- Correction made for 44.09% of the bits
- Expected accuracy of 78.38% per bit

Only if signals **uncorrelated**

Bagging

Bootstrap Aggregation

Algorithm

- 1. Create bootstrap resample of data
- 2. Fit model on each resample
- 3. Scoring:
 - Classification: Majority vote
 - Regression: Mean/Median score

Advantages

- Produces more stable predictions i.e. reduces variance
- Less likely to over-fit data

Disadvantages

Generates a "black box"

Random Forests

Bagging Decision Trees

- Introduced by Leo Breiman (2001)
- Uses bagging to improve decision trees
- De-correlates trees by samplingO Data with replacement
 - o Columns/features at each node
- Produces out-of-bag error rates
- Produces variable importance measure
- Parameters to tune^{*}:
 - 1. Number of trees
 - 2. Number of features to select at each node

PwC * There are other parameters such as the sampling rate and maximum depth of the tree.

Boosting

Algorithm

- Rather than fitting models to bootstrap samples of the data – boosting fits sequential models focusing on areas of poor performance
- Subsequent models correct errors of previous models

Advantages

Decrease bias in predictions

Disadvantages

- Generates a "black box"
- May be sensitive to outliers and noise

AdaBoost	GBM
Adaptive Boosting	Gradient Boosted Machines / Models
Fits model to weighted distribution of the data. More weight is given to observations that have the highest error rate.	Fits model to the residual of the prior models.

Gradient Boosted Trees

Boosting Decision Trees

- Introduced by Jerome Friedman (1999)
- Uses boosting to improve decision trees
- XGBoost algorithm most common

 Stochastic gradient descent
 Feature sub-sampling
- Parameters to tune^{*}:
 - 1. Number of trees
 - 2. Depth of trees
 - 3. Learning rate

Stacking

Stacked generalization & Blending

Algorithm

- Two stages of model fitting
 - 1. First Stage: Fit base learners to data
 - 2. Second Stage: Fit meta-learner to predictions of base learners

Considerations

- Different approaches to how the stacking is performed
- Careful consideration needs to be given to what data is used at what stages
- Need diverse models

Classification Example

Predictive Modeling Applications

Advanced Predictive Modeling Workshop Tree-based Methods

Kudakwashe Chibanda, FCAS, MAAA

kudakwashe.chibanda@pwc.com Jean-François Greeff, FASSA jean.francois.greeff@pwc.com