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Bias-Variance Tradeoff
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Bias-Variance Tradeoff
Low Variance High Variance

• Bias Error – Difference between expected
model prediction and true value.

• Variance Error – Difference due to
variability in model prediction.

• ൌݎݎݎܧ ܽ݅ܤ ଶݏ  ܸ ݎܽ݅ ܽ݊ ܿ݁  ݅ܰ ݏ݁

• Noise is that portion of error that cannot be
resolved by model.



PwC

Bias-Variance Tradeoff

https://theclevermachine.wordpress.com/tag/bias-variance-tradeoff/

High bias
but low
variance!

Lower bias
but high
variance!

Low bias
and low
variance
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Bias-Variance Tradeoff

https://theclevermachine.wordpress.com/tag/bias-variance-tradeoff/

Increasing model complexity leads to lower bias
and higher variance.

Overfitting is fitting noise so that model fails to
generalize to new data.
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Generalized Additive Models (GAM)
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Motivation

ܧ ݕ = +ߙ  ݔߚ



ୀଵ

Linear Model

ܧ ݕ = +ߙ  ݂(ݔ)
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Additive Model

ܧ)݃ ݕ ) = +ߙ  ݔߚ
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Generalized Linear Model

ܧ)݃ ݕ ) = +ߙ  ݂(ݔ)
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Generalized Additive Model

Parametric

Non-Parametric

Broader
Assumptions

Tighter
Assumptions
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General Ideas

ܧ)݃ ݕ ) = +ߙ  ݂(ݔ)



ୀଵ

The GAM is similar to a GLM in form and much more flexible.

Smoothers

݂may be loess curves,

regression splines, moving
averages, etc.
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Basis Functions

For splines, ݂defined as an

additive combination of
basis functions, ܾ.

Model Specification

Modeler specifies smoother
type and maximum basis
dimension for each variable.

Fitting Process

Through penalization the
fitting algorithm identifies
the best subspace for each
smoother

ܧ ݕ = +ߙ  +ݔߚ
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 ݂(ݔ)
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May Include Parametric Terms
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Polynomial Regression

• Polynomial regression of
order n is a familiar example.

ଵ

ଶ ,

ଷ
ଶ,


ିଵ

• Fitting the data doesn’t mean
you have created a good
predictive model.
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Polynomial Regression

• Sparser data allows too much
freedom for the polynomial model
to do crazy things.

• Endpoint behavior is another
problem. Extrapolation is
nonsense.

• Polynomial models are
reasonable when interested in
describing localized behavior
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Cubic Regression Splines
• Cubic polynomials joined together continuously and smoothly at selected “knots” partitioning the domain of

application =ߦ ,ଶߦ,ଵߦ} …, {ߦ

• Choose basis functions ܾ flexible enough to approximate any ݂ ݔ = ߚ∑ ܾ

���������������������������������ܾଵ ݔ = 1, ଶܾ ݔ = ଷܾ��,ݔ ݔ = ,ଶݔ ��ܾସ ݔ = ,ଷݔ ��ܾହ ݔ = (x−ߦଵ)ା
ଷ , … ,��ܾାସ ݔ = (x−ߦ)ା

ଷ

where (x−ߦ)ା
ଷ=ቊ

−ݔ) (ߦ
ଷ <ݔ, ߦ

0 ≥ݔ, ߦ

Cubic Spline Basis
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Cubic Regression Splines

• Makes more sense than the
polynomials. Endpoint
behavior much more
reasonable.

• Still a little too “wiggly” in
the sparse data region.

CRS Issues

• Requires specification
of the number of knots and
placement.

• Too many knots
captures noise and
performs poorly out-of-
sample.

• Too few knots and
important information is
left out.

Overfitting

Underfitting
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Spline Penalization
• How can we change the fitting process so that “smoother” solutions are identified?

• Introduce a penalization term to the usual SSE:

 −ݕ] ݂ ݔ ]ଶ+ߣන Ԣ݂Ԣ(ݐ)ଶ݀ݐ






ୀଵ

• The integral will be larger the more “wiggly” a potential solution is thus making it less likely that an overfit solution
is returned.

• ,�ߣ a constant, controls the degree to which the integral penalizes the usual SSE and thus determines the tradeoff
between fit and smoothness.

• As →ߣ ∞ the fit approaches a constant slope linear regression.

• As →ߣ 0 the fit approaches an unpenalized regression spline.

Basis Functions  −࢟] [(࢞)ࢌ


ୀ

නࣅ ࢚ࢊ(࢚)ԢԢࢌ

More Lower Bias: Term is smaller Higher Variance: Term is larger

Less Higher Bias: Term is larger Lower Variance: Term is smaller
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Penalized Cubic Spline
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Choosing λ

• Since what we are really interested in when building a predictive model is that the model generalize well to new data
(we want to fit signal, not noise), it is reasonable to choose basedߣ on cross validation.

• Exclude each of the ݊data points one-by-one, fit the model on the remaining ݊− 1 points and then measure how
well the model predicts on each of the excluded points ( “leave one out CV”). Find suchߣ that the average of these
errors is minimized - Ordinary Cross Validation Measure (OCV).

• A much more computationally efficient
measure with favorable statistical properties is
called the General Cross Validation
Measure (GCV) but it is basically the same
idea.

• You don’t really have to refit the model ݊
times!!!

• Technically, if a scale parameter is known
(Binomial/Poisson), minimization of the Un-
Biased Risk Estimator (UBRE) (Mallow’s (ܥ is

used instead.
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Some More Details
• When you start adding multiple covariates to the model design each smoother will have it’s own penalization and
thus its own .ߣ

• Multiple smoothers create an identifiability problem, that is, they are indistinguishable from one another up to an
additive constant. A constraint is imposed to eliminate this problem, but it is useful to be aware of this particularly if
you are looking at confidence bands around an effect or trying to understand degrees of freedom.

• The estimated degrees of freedoms (EDF) of each smoother is the degrees of freedom after penalization. Roughly,
the model starts with the space spanned by the chosen basis with degrees of freedom equal to basis dimension less the
identifiability constraint. Penalization will result in a final model with less degrees of freedom than that.

• We will use the mgcv package by Simon Wood to fit GAM’s. There are many different kinds of smoothers available
including some that can be applied to multiple variables.

bs= Description Advantages Disadvantages

“tp” Thin plate regression splines (TPRS) Any # covariates. Invariant to rotation. Penalty order. No
knots.

Computationally costly for large
data. Not invariant to covariate
rescaling.

“ts” TPRS with shrinkage Can zero term completely. As TPRS.

“cr” Cubic regression splines (CRS) Computationally cheap. Interpretable. Single covariate. Knot based.

“cs” CRS with shrinkage Can zero term completely. As CRS.

“cc” Cyclic CRS As CRS, but begin and end same . As CRS.

“ps” P-splines Flexible combination basis and penalty order. Tensor
products.

Equally spaced knots.
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A Simple Example
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A Simple Example (cont)
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A Simple Example (cont)
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Geospatial Application of GAM’s
Case Study
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Hierarchical Models
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Hierarchical Models

• Hierarchical models are applied to data that is grouped in the predictor variables such that the responses share
variance.

• Common examples in the insurance context are:

1. Claims experience grouped by territory or class

2. Retention of policies by agency or marketing territory

3. Longitudinal studies of claim frequency, severity or development

• Hierarchical models are known by many names including:

1. Random/Mixed effects models

2. Multilevel models

3. Longitudinal models

4. Panel data models

• “The central concept of hierarchical models is that certain model parameters are themselves modeled. In
other words, not all of the parameters in a hierarchical model are directly estimated from the data.” - James
Guszcza – “Hierarchical Growth Curve Models for Loss Reserving”
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Hierarchical Models
• The term “random effects” refers to the model parameters that are modeled based on “hyperparameters” estimated
from the data.

• The term “fixed effects” refers to the model parameters that are estimated directly from the data.

• Assume collection of data ୀଵ…ே(ܻ,ࢄ) and [݆ ]݅ means data point ݅belongs to group .݆

• Classical linear model: =ࢅ� ࢻ + +ࢄࢼ ࢿ same ߚ,ߙ for every ܻ

• Random intercept model: []ࢻ�=ࢅ + +ࢄࢼ ࢿ ߙ varies by group according to ఈߤ)ܰ ఈߪ,
ଶ)

• Random intercept/slope model: []ࢻ�=ࢅ + +ࢄ[]ࢼ ࢿ ߚ,ߙ vary jointly by group

Random Intercept Random Slope Random Slope/Intercept
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Parameters vs Hyperparameters

• Suppose we wanted to model class code level claim frequency over time with 100 classes

• If we chose to model this with a standard linear regression with a binary variable for each class:

• ܻ= ଵܥଵߛ + +⋯+ଶܥଶߛ ଵܥଵߛ + +ݐߚ ߝ

• 101 parameters (100 ’sߛ and (ߚ

• If we chose to model this with a random intercept model:

• ܻ= []ߙ + +ݐߚ ߝ

• 4 hyperparameters ఈߤ) ఈߪ, (ߪ,ߚ,

• If we chose to model this with a random intercept/slope model:

• ܻ= []ߙ + +ݐ[]ߚ ߝ

• 6 hyperparameters ఈߤ) ఈߪ, ఉߤ, ఉߪ, ఈఉߪ, (ߪ,

• Which of these models is more likely to overfit? How would the parameter/hyperparameter’s required change for
each model if we now had 200 classes?
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Relation to Credibility Theory

• Relationship between hyperparameters and parameters for the random intercept model:

  ݆ )݆ + (1-  ఈ where 



మ

ഀ
మା

Hopefully this looks very familiar!

• Each random intercept is a credibility weighted average between the intercept for a model that ignores class entirely
(pooled), ,ఈߤ and the intercept for a model fit on each class separately (unpooled), ഥݕ݆ − .ഥݔ݆ߚ

• As ఈߪ approaches 0, ܼ goes to 0 , so ෝߙ Unpooled

• As ఈߪ approaches ∞, ܼ goes to 1 , so ෝߙ Pooled

• By removing ഥݔ݆ from the above expression we have the familiar expression for Buhlmann’s credibility model:

ෝߙ = ܼ݆ݕഥ + (1- ܼ) ఈෞߤ where�ܼ =



మ

ഀ
మା

• Therefore Buhlmann’s credibility model is a particular type of hierarchical model and hierarchical models are a
means of incorporating credibility theory into the GLM framework.



PwC

Case Studies in Hierarchical Modelling
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