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Agenda
1) Neural Networks - Introduction
2) What does “Deep” mean in Neural Network terminology 

a) Stochastic Gradient Descent
b) Backpropagation is the key 
c) What drives the network growth

3) Architecture is everything: How Deep Learning architectures solve problems
a) Convolutional Neural Networks with Images + Demo
b) RNN/LSTM with Text + Demo
c) Autoencoders with unsupervised learning + Demo(if time)

4) Actuarial Applications 
a) Applications for deep neural nets in insurance
b) Challenges and risks : Questions actuaries should ask during neural net discussions



1) Perceptrons the building blocks of neural nets 
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Ai : Activation function at node i
pi : Previous layer(i) = A(pi)*WCi
ci : Current layer (i) 
A(ci)*WCi

Nomenclature



Terminology before we dive in
● “Pre-processing”: Data transforms readying data for input to a neural net. Key 

decisions include 
● “Feed-Forward”: Neural Networks where signal from functions travel in direction 

from input to output
● “Convolutional”: The merging of multiple, if not comprehensive, results from 

functions estimating an objective function 
● “Recurrent”: Networks where outputs are re-used as inputs at the next time step
● “Long Short Term Memory”: Commonly used in a recurrent network, a static layer 

recording the previous output with functions to control input, memory and output 
to the next step

● “Pooling”: TBD
● “Dropout”: A method to randomly drop connections to reduce over-fitting
● “Fully Connected”: All neurons receive an input signal and deliver an output 

signal
● “Backpropagation”: Adjusting the network weights by first minimizing the loss 

function and working back towards the input, adjusting connected weights at 
each step

● “Stochastic Gradient Descent”: A step towards a smaller loss function using 
partial derivatives

● “Hidden Layer”: Series of functions that process input signal and output to 
another layer. Hidden since input and output layers are transparent

● “Epoch”: A single run through the neural network from input to output (iteration) 

Sigmoid Function: (1)/(1+exp(-x)) 

Purpose: Similar to logistic, binomial classification

Tanh Function: TBD

Purpose: To transform a -ve 1 scale to +ve 1 

ReLU function: ~ max( 0 ,ln(1+exp(x)) ) x:[0:1]

Purpose: Activate as +ve multiplier at gradient 1 to outpuit

SoftMax Function: Prob (yi | input) = exp(xi*wi)/(Sum: exp(xi*wi: for 1 
to D) 

Purpose: Transform multinomial scalar outputs to posterior log normalized vector 
squashed between 0 and 1.Multinomial.



2) The “Deep” in Deep Neural Nets
GoogleNet for Image Classification 

https://www.cs.unc.edu/~wliu/papers/GoogL
eNet.pdf : Szegedy et al.

● 22 Layers deep
● Multiple entry points and merges
● Image classification focus
● Example of a feed-forward network 

where the outputs are not re-used as 
inputs

● Purpose is to classify images 
● A tangential purpose is to support 

internet memes (referenced in paper) 

Notes to consider: 
1. The layers of abstraction are akin to 

“feature engineering”. By abstracting the 
data into “hypotheses” to test that a human 
might not arrive at to develop as a 
hypothesis for the model

2. Works well for specific problems such as 
images, and text in some cases where 
there is complex data problem that needs a 
general solution

3. This is important to Actuaries for three 
specific reasons:

a. Abstraction layers are not easy to 
explain, nor are results 

b. Network architecture are important 
but complex; mistakes can be 
made

c. Overfitting is an issue(use 
dropouts)

Recurrent Neural Networks for 
Text Processing
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2a) Stochastic Gradient Descent
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Ai : Activation function at node i
pi : Previous layer(i) = A(pi)*WCi
ci : Current layer (i) 
A(ci)*WCi

Nomenclature

E: MSE (Mean 
Squared Error 
example)

Stochastic Gradient Descent is a popular method to reduce the error 
function and fit the model closer to the data

● Efficient because it assesses one connection at a time 
(unlike batch gradient descent which tries the whole or a 
large sample of the network)

● Series of partial derivatives. Let’s take one example:
○ Let’s assume an error function that measures the 

deviance between observed(o) and expected(e)
○ Squared difference between o and e is loss function 

L
○ Derivative with respect to single weight wi is   L(wi)
○ A single step learning parameter lamda(lam) is 

introduced
○ The weight is re-adjusted to wi=w0 - lam*   L(wi)
○ Why negative gradient? We want to reduce the 

error!
● This is done repetitively until a stopping criteria is reached
● Some issues 

○ Saddle points explored in Bengio
○ Overfitting



2b) Backpropagation is key to fitting models
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Backpropagation Steps:
1) Initialize the weights at each pi and ci
2) Calculate the Error Value
3) Take a random connection ci
4) Peturb the weight, ci*wi, value by a small amount 

δ(ci)wi
5) Relate back to connected pi by derivative of 

activation function (δpi = A’(pi) Z wij δcj)
6) Re-calculate the Error Value
7) Repeat until a stopping criteria is activated

Ai : Activation function at node i
pi : Previous layer(i) = A(pi)*WCi
ci : Current layer (i) 
A(ci)*WCi

Nomenclature

E: MSE (Mean 
Squared Error 
example)



3a) Convolutional Neural Net with images in R

Demo on MNIST data



3b) RNN/LSTM with Text

Demo on Text and Context 



4a) Deep Learning Actuarial Applications 1/2
Actuaries have been exploring neural networks for some time!

Some examples from Actuarial Lit or “Actuarial Neural Network” history: 

Major changes in the industry since these papers
● Development of open source software to build neural 

networks at scale
○ The Apache software foundation creating Spark, 

Storm and Cassandra and Hadoop
○ Python and R emerging as open source 

statistical and data munging programs with a 
vibrant community of developers

○ Data Science Community open sourcing code: 
TensorFlow from Google, Caffe, Keras, Torch, 
Theano  

● Hardware and specifically GPUs that support parallel 
processing

● Web services such as Amazon AWS, Google, Microsoft 
Azure and Rackspace offering managed services

● Data especially unstructured data such as text holding 
value with an objective in mind



4a) Deep Learning Actuarial Applications 2/2

Submission

Pricing

Claims

Reserving

Fraud

Observed in Industry Value add with DL in value chain

Logistic models for underwriters for a 
final (Yes/No) using thresholds

Finer tuned and multinomial models 
detailing Yes/No/Potential to write with 
change as an example of multiple 
outcomes with actions attached

Frequency-Severity or Pure Premium 
parametric or non-parametric (typically 
shallow ML) on historical data

Finer tuned pricing - company owns 
the architecture of the model

Shallow Machine Learning Triage models 
using some n-gram text models to predict 
Severity

Chain Ladder,BF and Cape Cod at the AY-Dev 
period grain. Stochastic reserving using 
parametric methods

Unsupervised clustering, network and graph 
analyses and shallow ML where target data 
available 

Deep NN architecture development that can 
combine text, sound, image and regular 
structured data - with valuable additional 
capabilities to absorb highly dimensional data

Claims grain with fine tuned cohort prediction 
across time, including RNN architectures that 
can estimate future states
Ability to combine 
data types and 
develop finely 
tuned suspicion 
models

1) You own 
the model 
architecture

2) Can use 
increasingly 
dimensional 
and complex 
data being 
created

3) Finer 
tuning of 
model to 
objective 
(dangers of 
overfitting)



4b) Challenges and risks: Questions to ask
● What is the objective of the model and how does this solve the business problem?
● What pre-processing steps have you taken?
● Is there a resource constraint? (In terms of people, systems and time)
● Why does the architecture actually work? Have you tested other architectures?
● Are you collecting human decision data? How are you adjusting for bias?
● Is the model overfitting? How have you controlled for this?
● Does the model need to be explainable to a business?
● How much upkeep is needed?
● Has ensembling with another model improved results?


