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Goodness-of-Fit

• Trying to answer question: How well does our model fit 
the data?

• Can be measured on training data or on holdout data

• By identifying areas of poor model fit, we may be able 
to improve our model

• A few ways to measure goodness-of-fit

– Squared or absolute error

– Likelihood/log-likelihood

– AIC/BIC

– Deviance/deviance residuals

– Plot of actual versus predicted target
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Squared Error & Absolute Error

• For each record, calculate the squared or absolute 
difference between actual and predicted target variable

• Easy and intuitive, but generally inappropriate for 
insurance data, and can lead to selection of wrong 
model

• Squared error appropriate for Normal data, but 
insurance data generally not Normal
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Residuals

• Raw residual = yi – μi, where y is actual value of 
target variable and μ is predicted value

• In simple linear regression, residuals are supposed 
to be Normally distributed, and departure from 
Normality indicates poor fit

• For insurance data, raw residuals are highly 
skewed and generally not useful
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Likelihood

• The probability, as predicted by our model, that 
what actually did occur would occur

• A GLM calculates the parameters that maximize 
likelihood

• Higher likelihood  better model fit (very simple 
terms)

• Problem with likelihood – adding a variable always 
improves likelihood
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AIC & BIC – penalized measures of fit

• Akaike Information Criterion (AIC) = 

-2*(Log Likelihood) + 2*(Number of Parameters in 
Model)

• Bayesian Information Criterion (BIC) = 

-2*(Log Likelihood) + (Number of Parameters in 
Model)*ln(Number of Records in Dataset)

• Good rule for deciding which variables to include –
unless a variables improves AIC or BIC, don’t 
include it
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Deviance

• Saturated model – the model with the highest possible 
likelihood
– One indicator variable for each record, so model fits data perfectly

• Deviance = 2*(loglikelihood of saturated model –
loglikelihood of fitted model)

• GLMs minimize deviance

• Like squared error, but reflects shape of assumed 
distribution

• We generally fit skewed distributions to insurance data 
(Tweedie, gamma, etc), and thus deviance is more 
appropriate than squared error
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Deviance – in Math

• Poisson: 

• Gamma:

• Tweedie: 

• Normal:  
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Deviance Residuals

• Square root of (weighted) deviance times the sign of 
actual minus predicted

• Measures amount by which the model missed, but 
reflects the assumed distribution

• Should be approximately Normally distributed, and far 
departure from Normality indicates that incorrect 
distribution has been chosen

• Ideally, there should be no discernable pattern in 
deviance residuals

– Model should miss randomly, not systemically



Liberty Mutual Insurance

Deviance Residual Diagnostics

• Histogram of deviance residuals – look for approximate 
Normality (bell-shape)
– Far departure from Normality generally indicates that incorrect 

distribution has been chosen

– Can also indicate poor fit

• Scatter plot of deviance residuals versus predicted 
target variable
– Should be uninformative cloud

– Pattern in this plot indicates incorrect distribution
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Example: Selecting Severity Model

• Goal is to select a distribution to model severity

• Two common choices – Gamma and Inverse 
Gaussian
– Gamma: V(μ) = μ2

– Variance of severity is proportional to mean severity squared

– Inverse Gaussian: V(μ) = μ3

– Variance of severity is proportional to mean severity cubed

• Two lines of business

– LOB1 is high-frequency, low-severity

– LOB2 is low-frequency, high-severity
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Deviance Residual Histogram

LOB1, Gamma GLM
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Deviance Residual Histogram

LOB1, IG GLM
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Deviance Residual Histogram

LOB1, Gamma GLM
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Deviance Residual Histogram

LOB1, IG GLM
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Deviance Residual Histogram

LOB2, Gamma GLM
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Deviance Residual Histogram

LOB2, IG GLM
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Actual vs Predicted Target

• Scatter plot of actual target variable (on y-axis) 
versus predicted target variable (on x-axis)

• If model fits well, then plot should produce a 
straight line, indicating close agreement between 
actual and predicted
– Focus on areas where model seems to miss

• If have many records, may need to bucket (such as 
into percentiles)

• Depending on scale, may need to plot on a log-log 
scale
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Example of Actual vs Predicted
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Example of Log of Actual vs Log of Predicted
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Measuring Internal Stability

• Process of determining how robust model results 
are

• Getting a second opinion (and third and fourth and 
fifth) on how well the model performs

• Goals
– Guard against overfitting

– Select models that are more stable

– Better understand inherent volatility of results
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Validation 101: Assess model on 

holdout data
Split data into training-test-validation

Training Build model

Validation Assess stability of model

Lift Calculate model lift

Why is it more complex than this?

– Randomly splitting data doesn’t necessary 
guard against overfitting

– Data may be too thin for such a rigid split

– Doesn’t provide a great diversity of opinions
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Overfitting can happen if models 

aren’t validated out-of-time
• The same storm hits all homes in an area, the same bad 

winter impacts auto claims in a region, etc

• Through out-of-time validation, we can help guard against 
overfitting

Year 1

Year 2

Year 3

Year 4

Year 5

Training

Year 1
Year 2
Year 3

Validation

Year 4

Lift

Year 5

How do we use this?

Examine model fit on 
validation set

If reasonable 

If not    

Determining reasonableness 
often more art than science
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Example of Plot of Actual vs Predicted on Holdout 

Training Validation (Out of Time)
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Cross-validation is very useful when data is then 

and can give us more confidence in results

• Split data into subsets 

• Refit model on each subset and compare results across 

subsets

25
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Bootstrapping

• Re-sampling technique that allows us to get more out 
of our data

• Start with a dataset and sample from it with 
replacement
– Some records will get pulled multiple times, and some will not get 

pulled at all

• Generally, we create a dataset with the same number 
of records as our original dataset

• Can create many bootstrap datasets, and each dataset 
can be thought of as an alternate reality
– Since each bootstrap is an alternate reality, we can use 

bootstrapping to construct confidence intervals and get more 
opinions on model performance
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We can use bootstrapping to put confidence 

intervals around lift measures

1 2

Model A currently in 
production, with Gini 
of 35.4

Challenger Model B 
has Gini of 36.9

Should we implement 
Model B?

Understand how 

significant the ‘victory’ 

is

Better understanding 

of uncertainty

New model expected 
to generate $1M in 
additional revenue in 
first 3 months

Actual revenue is 
$850K

Did model fail, or is 
this normal variation?
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