Antitrust Notice

The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the antitrust laws. Seminars conducted under the auspices of the CAS are designed solely to provide a forum for the expression of various points of view on topics described in the programs or agendas for such meetings.

Under no circumstances shall CAS seminars be used as a means for competing companies or firms to reach any understanding – expressed or implied – that restricts competition or in any way impairs the ability of members to exercise independent business judgment regarding matters affecting competition.

It is the responsibility of all seminar participants to be aware of antitrust regulations, to prevent any written or verbal discussions that appear to violate these laws, and to adhere in every respect to the CAS antitrust compliance policy.

Cluster Analysis in Loss Development

Dave Clark Diana Rangelova

Ratemaking, Product and Modeling (RPM) Seminar - March 2018

Agenda

- 1. Introduction
- 2. How to find clusters:
 - a) Cluster analysis
 - b) Principal Component Analysis (PCA)
 - c) Data transformation (curve fitting)
- 3. Practical considerations and observations
- 4. Soft clustering and credibility

- > Clustering is about finding groups in a set of objects
 - The objects in a group should be similar and groups should be different from each other
 - No need to define the groups in advance (i.e. unsupervised learning)
 - Essential to assess the usefulness and meaning of the identified groups

Introduction Why Clustering?

Cluster Analysis has grown rapidly, especially as computer software has become more readily available.

Copyrighted Material Chapman & Hall/CRC Handbooks of Modern Statistical Methods Handbook of **Cluster Analysis** Edited by **Christian Hennig** Marina Meila **Fionn Murtagh Roberto Rocci** CRC Press A CHAFMAN & HALL BOOK **Copyrighted Material**

2015 - 773 pages

Introduction Why Clustering?

- > What questions could be answered with cluster analysis?
 - Test the data homogeneity
 - Find a benchmark
 - Identify drivers of development
- What kind of data can be clustered?
 - Segments, contracts or claims
 - State (for classification ratemaking)
 - Loss development patterns, loss ratios, severity, frequency...

- Exploratory Data Analysis
 - Cluster analysis
 - Principal Component Analysis (PCA)
 - Data transformation (curve fitting)

Introduction Schedule P Example

Co.	Line	Owners	ship	Geograp	hic	Distribution		ATA Loss D	evelopment Fa	ictors	
1	MedMal	Mutual		Regional		Direct, Ind Agency	2.50				
2	MedMal	Stock		National		Direct, Ind Agency					
3	PPAL	Stock		National		MGA, Ind Agency	2.25				
4	PPAL	Stock		Regional		Ind Agency					
5	WC	Stock		National		MGA	2.00				
6	WC	Mutual		Regional		Ind Agency					
C -	24	26	40		70		1.75				MedMal
1	2.01	1 24	40 1 01	1 1 2	1.06		1.50				- PPAL
ו ר	2.01	1.24	1.21	1.12	1.00						
2	2.05	1.29	1.10	1.07	1.00		1.25				
3	1.20	1.09	1.05	1.03	1.01						
4	1.15	1.04	1.01	1.01	1.00		1.00				
5	1.34	1.14	1.07	1.04	1.02		24	36	48	60	72
6	1.28	1.14	1.06	1.04	1.02		- 1				72

Introduction Where to Start?

Explanatory Variables

Variables used for clustering, PCA, ...

Co	. Line	Ownership	Geographic	Distribution	24	36	48	60	72
1	MedMal	Mutual	Regional	Direct, Ind Agency	2.01	1.24	1.21	1.12	1.06
2	MedMal	Stock	National	Direct, Ind Agency	2.05	1.29	1.16	1.07	1.00
3	PPAL	Stock	National	MGA, Ind Agency	1.20	1.09	1.05	1.03	1.01
4	PPAL	Stock	Regional	Ind Agency	1.15	1.04	1.01	1.01	1.00
5	WC	Stock	National	MGA	1.34	1.14	1.07	1.04	1.02
6	WC	Mutual	Regional	Ind Agency	1.28	1.14	1.06	1.04	1.02

Cluster Analysis How to Find Clusters?

- Exploratory Data Analysis
 - Cluster analysis
 - Principal Component Analysis (PCA)
 - Data transformation (curve fitting)

Cluster Analysis Types of Clustering

- > Types of clustering algorithms
 - Hierarchical vs. Partitioned
 - Hard vs. Soft (ex: K-means vs. Fuzzy C-means)
 - Complete vs. Partial
 - Density Based Clusters (ex: DBSCAN)
- K-means partitions the data in a user-specified number of clusters (K), in which each observation belongs to the cluster with the nearest mean.

Cluster Analysis K-means: Pros & Cons

- K-means is simple, fast and efficient
- K-means does not perform well when:
 - There are no natural clusters
 - Clusters are of different size
 - Clusters are not spherical
 - Outliers exist

Cluster Analysis No natural clusters

Cluster Analysis Clusters of different size

œ n=4000 ~ ø ιΩ. 4 า=200 0 2 5 6 3

Original data

K-means result

Cluster Analysis Non spherical clusters

Original data

K-means result

Source: Introduction to Data Mining [5]

Cluster Analysis Outliers

- > Outliers make the centroid less representative
- Eliminate outliers prior to clustering
- > K-medoids: variation of K-means where the centroids are actual data points

Cluster Analysis Schedule P example: Cluster Analysis

	K-means	K-means	K-medoids
LOB	2 clusters	3 clusters	3 clusters
MedMal	1	1	1
MedMal	1	1	1
MedMal	1	2	1
MedMal	1	1	1
MedMal	1	2	1
MedMal	1	2	1
PPAL	2	3	2
PPAL	2	3	2
PPAL	2	3	2
PPAL	2	3	2
PPAL	2	3	2
PPAL	2	3	2
WC	2	3	3
WC	2	3	3
WC	2	3	3
WC	2	3	3
WC	2	3	3
WC	2	3	3

Cluster Analysis Too Many Dimensions

 Difficulty visualizing more than two dimensions for validation purposes

12	24	36	48	60	72
5.70	2.01	1.24	1.21	1.12	1.06
3.86	2.05	1.29	1.16	1.07	1.00
1.92	1.20	1.09	1.05	1.03	1.01
1.64	1.15	1.04	1.01	1.01	1.00
2.19	1.34	1.14	1.07	1.04	1.02
2.33	1.28	1.14	1.06	1.04	1.02

18

Cluster Analysis Too Many Dimensions

Data gets "lost in space"

Randomly generated 100 points in 1D and 2D

 "In high dimension spaces, distances between points become relatively uniform." The performance of clustering algorithms relying on L₁ (sum of absolute values) or L₂ (Euclidian) metrics in high dimensional data may be compromised. Source: M. Steinbach, L. Ertoz, V. Kumar, "The Challenges of Clustering High Dimensional Data" [7]

PCA How to Find Clusters?

- Exploratory Data Analysis
 - Cluster analysis
 - Principal Component Analysis (PCA)
 - Data transformation (curve fitting)

PCA stretches and rotates data with the goal to derive the best possible k-dimensional representation of the Euclidean distance among objects.

Source: The Elements of Statistical Learning

PCA How to perform a PCA?

- PCA provides an opportunity for interpretation
 - PC1 captures the mean loss development
 - PC2 indicates a change in the loss curve shape

Data (scaled and centered)				x	Ei	genvec	tors	=		Princ Compc	ipal onents	
Co 2 1 0.9 2 1.0 3 -0.8 4 -0.9	4 36 9 0.46 8 0.89 3 -0.82 4 -1.30	48 2.07 1.17 -0.75 -1.39	60 2.18 0.66 -0.60 -1.14	72 1.43 -1.04 -0.78 -0.96	х	Dim 24 36 48 60	1 0.47 0.46 0.49 0.46	2 -0.39 -0.38 -0.12 0.36	=	Co 1 2 3 4	PC1 3.18 1.45 -1.67 -2.57	PC2 1.04 -1.44 -0.07 -0.10

PCA Schedule P example: Visualization

PCA Explanatory Variables

Explanatory Variables

Co	Line	Ownership	Geographic	Distribution
1	MedMal	Mutual	Regional	Direct, Ind Agency
2	MedMal	Stock	National	Direct, Ind Agency
3	PPAL	Stock	National	MGA, Ind Agency
4	PPAL	Stock	Regional	Ind Agency
5	WC	Stock	National	MGA
6	WC	Mutual	Regional	Ind Agency

PCA Schedule P example: Visualization - Ownership

PCA Schedule P example: Visualization - LOB

Data Transformation How to Find Clusters?

- Exploratory Data Analysis
 - Cluster analysis
 - Principal Component Analysis (PCA)
 - Data transformation (curve fitting)

55

Data Transformation Sherman Curve

Sherman proposed a curve that fits to the typical LDF pattern

$ATA_t = 1 + \left(\frac{Scale}{t+c}\right)^{Shape}$

Data Transformation

How to estimate the parameters?

- > Sherman recommends estimating the parameters by using log-linear regression
 - All actual age-to-age factors must be strictly greater than 1
 - Fitting a logged value rather than actual amounts
- ➢ GLM to the rescue!
 - Apply GLM with log-link on actual data

- > Allows comparison of loss development patterns of different sizes
- Does not work well for flat curves
- > The focus is on the fit and not on maintaining the distances between points

Data Transformation Schedule P example: Sherman curve

Practical Considerations How Many Clusters Do You See?

Practical Considerations The Coins Experiment

"The predisposition to detect patterns and make connections is what

leads to discovery and advance. The problem, however, is that this

tendency is so strong and so automatic that we sometimes detect

patterns when they do not exist."

T. Gilovich, "How We Know What Isn't So - The Fallibility of Human Reason in Everyday Life"

Practical Considerations

Correlations between lines of business

- Compare the first principal component for two different lines, written by the same company
- Schedule P data for loss reserving posted on the CAS website
 - 54 companies with CAL and GL lines
 - 20 companies with WC and GL lines
 - Data is from 1988 to 1997
- Check if historical dependency is preserved in more recent years

Practical Considerations First principal component for WC/GL

PCA on Reported loss

1988 - 1997

Practical Considerations First principal component for CAL/GL

PCA on Reported loss

1988 - 1997

1998 - 2007

Soft Clusters and Credibility

- Soft (a.k.a. fuzzy) clustering allows each data point to belong to more than one cluster
- Membership grades are assigned to each data point
- In R, use fanny(data, k=2,...) from package "cluster" for fuzzy clustering
- Gaussian Mixed Models can also produce soft clusters

	Fuzzy 1	Fuzzy 2	Fuzzy 3
LOB	(MedMal)	(PPAL)	(WC)
MedMal	45%	27%	28%
MedMal	54%	22%	24%
MedMal	66%	17%	18%
MedMal	46%	26%	28%
MedMal	65%	17%	18%
MedMal	66%	17%	18%
PPAL	6%	57%	38%
PPAL	12%	51%	37%
PPAL	16%	44%	40%
PPAL	8%	55%	37%
PPAL	5%	45%	49%
PPAL	6%	49%	44%
WC	5%	51%	44%
WC	5%	41%	54%
WC	9%	36%	56%
WC	5%	34%	61%
WC	5%	37%	58%
WC	13%	36%	51%

Soft Clusters and Credibility Schedule P: New Example

42

Soft Clusters and Credibility K-means and PCA

- No real distance between clusters
- K-means is challenged with overlapping clusters

	K-means							
	1	2	3					
CAL	8	3	9					
PPAL	0	16	4					
WC	1	2	17					

Soft Clusters and Credibility PC1 Density

Soft Clusters and Credibility The Theory

> Assume that the density of the data (y) is described by a mixture of number (g) of component densities f(y) in some unknown proportions (π) .

- > For clustering, g will be the number of clusters
- Calculate the posterior probability (Bayes Theorem) that an observation y_i belongs to the *i-th* component of the mixture:

$$\tau_i(y_j) = \frac{\pi_i f_i(y_j)}{f(y_j)}$$

 $pdf = \sum_{i=1}^{s} \pi_i f_i(y)$

 \succ If we assume that the data in the clusters is independent and normally distributed, we can use a Gaussian Mixture Model (GMM).

45

Soft Clusters and Credibility Results

- GMM outperforms K-means when clusters are overlapping.
- These results were obtained using R package "Rmixmod". Multiple other options are possible (ex: mclust, mixtools...)
- Bayesian Information Criterion is used to determined the number of clusters.

	i i osabilitios							
	1	2	3					
CAL	0%	0%	100%					
CAL	0%	0%	100%					
PPAL	0%	100%	0%					
PPAL	0%	100%	0%					
WC	93%	0%	7%					
WC	94%	0%	6%					

	Gaussian Mixed Model						
	1	2	3				
CAL	1	1	18				
PAL	0	17	3				
NC	17	1	2				

Probabilities

Pros:

- > It is a well defined statistical model allowing for hypothesis testing and validation
- > Compared to K-means, it considers the cluster covariance
- It produces soft clusters

Cons:

- GMMs are not robust against outliers. It is recommended to use t-distribution if outliers are present
- Over-parameterization: Everything can be fitted with enough number of mixture components

Soft Clusters and Credibility Practical Applications

We use "soft clustering" to collapse a large number of patterns into a smaller set of representative groups.

Soft Clusters and Credibility Practical Applications

State	Pr (G ₁ X _i)	Pr (G ₂ X _i)	Pr (G ₃ X _i)
Alabama			
Alaska			
Arizona			
Arkansas			
California			
ł	1	1	1
Wyoming			
=========	======	======	======
Grand Total	Pr (G ₁)	Pr (G ₂)	Pr (G ₃)

Soft clustering can be estimated using Mixed Models or Fuzzy clustering.

Membership in any benchmark Group is estimated using Bayes' Theorem.

$$\Pr(G_j|X) = \frac{\Pr(G_j) \cdot f(X|G_j)}{\sum_{j=1}^{3} \Pr(G_j) \cdot f(X|G_j)}$$

Example: Loss development for Alaska= $Pr(G_1|X_{Alaska})$ * Benchmark Group 1

+ $Pr(G_2|X_{Alaska})$ * Benchmark Group 2

+ $Pr(G_3|X_{Alaska})$ * Benchmark Group 3

- Clustering techniques help us obtain a better understanding of the loss development:
 - Explore the structure of data
 - Go beyond "just" practical grouping of data
 - Identify variables impacting the development
- Each method has strengths and weaknesses
 - Look for robustness between methods
- Investigate connection between Soft Clustering and Credibility Theory

Selected References

- 1. D. Clark (2017) Estimation of Inverse Power Parameters via GLM, Actuarial Review, May-June 2017, <u>https://ar.casact.org/estimation-of-inverse-power-parameters-via-glm/</u>
- 2. T. Hastie, R. Tibshirani, J. Friedman (2009) **The Elements of Statistical Learning Data Mining, Inference, and Prediction**, Springer https://web.stanford.edu/~hastie/Papers/ESLII.pdf
- 3. C. Hennig (2015) Clustering strategy and method selection, In C. Hennig, M. Meila, F. Murtagh, and R. Rocci (Eds.). *Handbook of Cluster Analysis*. Chapman and Hall/CRC, <u>http://www.homepages.ucl.ac.uk/~ucakche/</u>
- 4. C. Hennig, M.Meila, F. Murtagh, R.Rocci (2017) Handbook of Cluster Analysis, CRC Press
- 5. P. Tan, M. Steinbach, V. Kumar (2005) Cluster Analysis: Basic Concepts and Algorithms, In P. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining, Pearson Addison Wesley, <u>http://www-users.cs.umn.edu/~kumar/dmbook/index.php</u>
- 6. J. Shlens (2003) **A Tutorial on Principal Component Analysis: Derivation, Discussion and Singular Value Decomposition,** arXiv preprint arXiv:1404.1100, 2014, https://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition_jp.pdf
- 7. M. Steinbach, L. Ertoz, V. Kumar, **"The Challenges of Clustering High Dimensional Data"**, <u>https://www-users.cs.umn.edu/~kumar001/papers/high dim clustering 19.pdf</u>
- 8. J. VanderPlas, "Python Data Science Handbook", O'Reilly Media, <u>http://shop.oreilly.com/product/0636920034919.do</u>
- 9. CAS Schedule P data for Loss Reserving: <u>http://www.casact.org/research/index.cfm?fa=loss_reserves_data</u>

Thank you!

