Exploring the Fundamental Insurance Equation

PATRICK STAPLETON, FCAS, MAAA

PRICING MANAGER ALLSTATE INSURANCE COMPANY PSTAP@ALLSTATE.COM

RPM 2018

CAS Antitrust Notice

- The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the antitrust laws. Seminars conducted under the auspices of the CAS are designed solely to provide a forum for the expression of various points of view on topics described in the programs or agendas for such meetings.
- Under no circumstances shall CAS seminars be used as a means for competing companies or firms to reach any understanding – expressed or implied – that restricts competition or in any way impairs the ability of members to exercise independent business judgment regarding matters affecting competition.
- It is the responsibility of all seminar participants to be aware of antitrust regulations, to prevent any written or verbal discussions that appear to violate these laws, and to adhere in every respect to the CAS antitrust compliance policy.

1

Fundamental Insurance Equation

- CAS Statement of Principle: "A rate provides for <u>all</u> <u>costs</u> associated with the transfer of risk."
- Premium= Losses + LAE + UW Expenses + UW Profit
- Key is to find appropriate balance
 - \odot Ratemaking is prospective
 - \odot Balance should be attained at the $\underline{\mathbf{aggregate}}$ and individual levels
- CAS Statement of Principles Regarding Ratemaking

Two Methods to Determine Rate Level Adequacy • Pure Premium Method Indicated Avg Rate = Pure Prem (Individing LAB) + Pixed UW Expense Per Exposure 1.0 - variable topense % - Target UW Profit % Indicated Change = Indicated Avg Rate Projected Avg Premium @ Dirrent Rate Level • Loss Ratio Method Indicated Change = Loss&LAB Ratio + Rived Expense Ratio Indicated Change = LAB Ratio + Rived Ratio

Pure Premium Vs. Loss Ratio				
When to use Pure Premium Method	When to use Loss Ratio Method			
 Historical premium data is unreliable/volatile New company 	 Historical exposure data is unreliable/changing Exposures are not well defined 			

Exposures

• Must Be **P**roportional

Losses should be highly correlated with exposures

- Must Be **P**ractical
 - \odot Easy, Objective, and Inexpensive
- Must Consider Historical Precedence
 - Regulators and Transition Costs

Data Aggregation for Losses

- <u>Calendar Year</u> Transactional Fixed at year end
- Accident Year Tied back to when accident occurs

..... (

- Will develop over time Policy Year Tied back to when policy was
- written Will develop over time
- <u>Report Year</u> Tied back to when accident was reported

 - Will develop over time

- <u>Single Example</u>
 - · 12-month policy
 - Policy written 11/1/17
 - Accident occurs 10/1/18
 - · Accident reported 1/15/19
- Payment of 10k on 2/1/19
- Payment of 5k on 5/1/20

Data Aggregation for Losses

- Given the information on the last slide, how much loss is attributed to:
 - O Calendar Year 2017? 2018? 2019? 2020?
- Accident Year 2017? 2018? 2019? 2020?
- Policy Year 2017? 2018? 2019? 2020?
- Report Year 2017? 2018? 2019? 2020?

Data Aggregation for Losses

 Given the information on the last slide, how much loss is attributed to: Calendar Year
2017 2018: \$0
× 2019; \$10,000
2020: \$5,000
Accident Vear
× 2017, 2019, 2020: \$0
× 2018: \$15,000
 Policy Year
× 2017: \$15.000
× 2018, 2019, 2020; \$0
 Report Year
2017. 2018. 2020: \$0
2010: \$15,000
-019. 413,000

	"In order to cover our future losses and expenses and make our desired profit, we need to increase our current premium by 16.2%"	
G	Indicated provision for loss and loss adjustment expense	\$117.48
2	Indicated provision for fixed expense	\$15.46
3	Variable expense and profit ratio	28.7%
4	Indicated average premium [(1) + (2)] + [1 - (3)]	\$186.45
G	Projected average earned premium at current rates	\$160.51
6	Indicated rate level change [(4) + (5)] - 1	16.2%

Development of Indicated Provision for Loss and Loss-Adjustment Expense

Adjustments to Losses

Loss development

- Technique of using historical patterns to estimate the ultimate loss amount based on losses incurred or paid to date
- · WHY?? Accident Year losses develop for two reasons
- 1. New losses emergeafter year end
- 2. Incurred loss (paid + reserve) on known claims increase because either
 - Reserves are increased
 - or
 - b. Paid loss exceeds the case reserve

Loss Development Methods

- · Each method makes assumptions about the nature of loss development.
- e Each method makes assumptions about future loss development based on pastloss development.
- The appropriateness of those assumptions influences the accuracy of the method. Therefore, the best method depends on the situation at hand.
- · Common Methods include: Chain Ladder Method - Next Slide

 - Expected Loss Ratio (ELR) Method A Priori Loss Ratio Bornhuetter-Ferguson (BF) - Blending of Actual and Expected
 - Berquist-Sherman (B-S) Adjusts for Reserving/Payment Patterns
- Regression Linear or Exponential (Curve Fitting)

Develop	1 ment of I	ndicated	Provision	0	nd Lose-A	diustmon	t Evnense
Comprel	hensive (loverage	TOVISION	101 L088 a	nu Loss-r	tujusunen	t Expense
Paid Loss					Physical to set	damage cov tle quickly v developme	verages tend with little int
FAY	15 Months	27 Months	39 Months	51 Months	63 Months	75 Months	87 Months
12/31/2009	2,997,407	3,087,330	3,149,076	3,180,567	3,180,567	3,180,567	3,180,567
12/31/2010	4,727,364	4,869,185	4,966,568	5,016,234	5,016,234	5,016,234	5,016,234
12/31/2011	4,064,114	4,186,038	4,269,758	4,312,456	4,312,456	4,312,456	4,312,456
12/31/2012	4,421,474	4,554,119	4,645,201	4,691,653	4,691,653	4,691,653	
12/31/2013	5,954,188	6,132,814	6,255,470	6,318,025	6,318,025		
12/31/2014	4,734,276	4,828,961	4,973,830	5,023,568	Fetim	ato of "ultin	nato" loccor
12/31/2015	2,847,187	2,961,074	2,990,685		for A	V and na ta	late 1033ca
12/31/2016	2,445,244	2,518,601			IOF A	i enung 12/	
12/31/2017	3,612,634				\$3,612, 1.00 X	b34 x 1.03 > 1.00 x 1.00	x 1.02 x 1.01 = \$3,833,38
	15-27	27-39	39-51	51-63	63-75	75-87(ultima t	e)
2nd prior	1.02	1.02	1.01	1.00	1.00	1.00	
1st prior	1.04	1.03	1.01	1.00	1.00	1.00	
Current year	1.03	1.01	1.01	1.00	1.00	1.00	

Discussion: Spring 2015, Question 22

• An actuary is using the development technique based on accident year data to calculate ultimate claim estimates at 12 months maturity. For each issue provided below, briefly discuss how it may impact the analysis and propose an appropriate response to mitigate the issue.

- The actuary observes a long development pattern
- $\ensuremath{{}^{\circ}}$ Tort reforms anticipated to decrease severity on all open and future claims were recently enacted
- In recent years, policies have been written with higher deductibles than in prior years
- \odot The insurer has implemented a new claims system that allows faster processing of claims

Discussion: Spring 2015, Question 22

• The actuary observes a long development pattern

- o Early maturities are highly leveraged. Use BF Method.
- Claims at early maturities will be volatile, which can cause incorrect estimates. Expected claim method can be used instead.
- Tort reforms anticipated to decrease severity on all open and future claims were recently enacted
 - Overstates estimation based on historical claims. Use report year data as it will address the issue.
 - It would cause lower true cumulative development factor (CDF) than historical. To mitigate the issue use a frequency-severity technique and modify the severity.

Discussion: Spring 2015, Question 22

• In recent years, policies have been written with higher deductibles than in prior years

 Probably will be more development in later periods since it will take longer for losses to reach deductible, as well as large losses more likely settled later. Restate all claims at new deductible levels to mitigate effect.

- Mix of business will change after the higher deductibles. On average, insurer will pay less and so development technique based on historical data will overestimate. Policy Year data should be used to neutralize or isolate the change.
- The insurer has implemented a new claims system that allows faster processing of claims
 - Overstates estimation, CDF developed based on historical data will be higher than actual. Use B-S to account for change.

- \circ Identify trend amount
- o Identify trend period

Credibility

• Where can credibility be used?

- Overall indication
- An individual loss estimate
- Loss trends
- \odot Large Loss / CAT provisions
- How?
 - \odot Choose a method
- Choose a complement of credibility

Credibility Methods

- <u>Classical Credibility</u> (a.k.a Limited Fluctuation) goal is to limit the effects that random fluctuations in the data can have on an estimate
- **<u>Buhlmann Credibility</u>** (a.k.a. Least Squares Credibility) – goal is to make estimation errors as small as possible (minimize the squared error)
- Credibility weighted estimate is calculated as Z * (Observed Estimate) + (1-Z) * (Com plement)

Complement of Credibility

• Desired traits

- 1) Accurate
- $_{\odot}$ 2) Unbiased
- \odot 3) Statistically independent from the base statistic
- 0 4) Available
- o 5) Easy to compute
- $\,\circ\,$ 6) Logical relationship to base statistic
- Examples include other lines of business, countrywide data, industry data, or other competitor information to namea few.

Complement of Credibility

- \bigcirc
- You are responsible for pricing an Alaska book of auto busi ness for the year 2019.
- Your company began writing auto business in Alaska in 2016 and since then you have written 1,000 policies.
- What are some appropriate complements of credibility for: • Loss Trends
 - Average Loss Provision
 - Overall Indication
- · Consider the pro's and con's of each complement of credibility

Complement of Credibility

Loss Trends

- Alaska Industry Trend
- o Other Northwest States
- Countrywide Data
- Competitors
- Average Loss Provision
- o Other Northwest States
- o Countrywide Data
- Competitors
- Overall Indication
- Competitors
- o Countrywide Data

Loss Adjustment Expenses

- Costs incurred by a company during the claim settlement process.
- Two types
 - Allocated Loss Adjustment Expense (ALAE)
 - $\times \operatorname{Costs}$ that can easily be related to individual claims
 - × Typically included with loss (loss development triangle)
- \odot Unallocated Loss Adjustment Expense (ULAE)
 - Costs that are more difficult to assign to particular claims
 Must determine proper allocation method for ratemaking

- Large individual losses and catastrophes can add unwanted volatility
- General approach to ratemaking:

Detailed Calculations

- \odot 1) Remove either a portion, or all large loss and/or catastrophes
- 2) Replace with a more stable alternative, typically:
 A) Average over a longer time period (with judgment)
 B) In case of some types of catastrophes, a model
- We do this to optimize the credibility and relevancy of the data

Comprehens	sive Coverage	ision for Loss and	l Loss-Adjustm	ent Expens
Calendar year	Total incurred losses	Catastrophe losses	Incurred losses	Catastrophe losses Percent
1993	\$ 2,062,835	\$ 283,155	\$ 1,779,680	15.9%
1994	1,967,170	50,023	1,917,147	2.6%
1995	2,084,698	14,710	2,069,988	0.7%
1996	3,179,286	932,774	2,246,512	41.5%
1997	2,737,399	169,844	2,567,555	6.6%
1998	3,320,365	82,416	3,237,949	2.5%
•				
•				
2015	13,064,311	6,233,048	6,831,263	91.2%
2016	7,583,256	1,216,266	6,366,990	19.1%
2017	8,468,534	1,157,517	7,311,017	15.8%
25-year aggr	egate average	\$21,391,353	\$120,831,928	17.7%

- $\,\circ\,$ 2) Determine what % of each expense type is fixed and variable
- o 3) Apply total fixed and variable expenses appropriately

Profit Provision

• 2 sources of profit

- Investment Income (Capital + Policyholder Supplied Funds)
- Underwriting Profit
- Calculate Underwriting Profit that achieves a target Rate of Return on Equity
- For some long-tailed lines, investment income is large enough to accept an underwriting loss!

	"How much premium do we need to cover future losses and expenses and still make our desired norfi?"	
0	Indicated provision for loss and loss adjustment expense	\$117.48
2	Indicated provision for fixed expense	\$15.46
3	Variable expense and profit ratio	28.7%
4	Indicated average premium [(1) + (2)] + [1 - (3)]	\$186.45
5	Projected average earned premium at current rates	\$160.51
6	Indicated rate level change [(4) + (5)] - 1	16.2%

Current Rate Level Methods @^{Current}

• Some Methods to choose from

- $_{\odot}$ Extension of Exposures
 - Re-rate all historical policies using current rating structure
 The most accurate method
- o Parallelogram Method
 - × Assumes policies are written uniformly across time
 - Applies an average factor to historical periods
- Choice of method will depend on data restraints and accuracy thresholds
 - $\,\circ\,$ A trade-off between accuracy and time

	"In order to cover our future losses and	
	expenses and make our desired profit, we need to increase our current premium by 16.2%"	
D	Indicated provision for loss and loss adjustment expense	\$117.48
	Indicated provision for fixed expense	\$15.46
2	Variable expense and profit ratio	28.7%
)	Indicated average premium [(1) + (2)] + [1 - (3)]	\$186.45
)	Projected average earned premium at current rates	\$160.51
5)	Indicated rate level change [(4) + (5)] - 1	16.2%

Acting on Rate Indications

Considerations

- Regulatory
 - Some states impose certain methodologies and restrictions that need to be considered
 - × Profit provisions are also capped in certain states
 - × Use of modeled losses to account for hurricanes
- Operational
 - * A small rate increase in a small book of business may not be efficient to pursue
- \circ Marketing
 - * Acting on rate indications has desired and undesired consequences that must be balanced

Acting on Rate Indications

	Company 1	Company 2
Average Premium	\$400	\$500
Item Count	200,000	100,000
Total Premium	\$80,000,000	\$50,000,000
Average Loss Provision	\$240	\$300
Total Expected Loss	\$48,000,000	\$30,000,000
Pure Premium Trend	0.0	5.0
Written Premium Trend	-0.5	-3-5
Net Trend*	0.5	8.8
Variable Expense Ratio	21.3%	18.0%
Current Indication	5.0%	5.0%

*Net Trend = (1+ PP Trend)/(1 + WP Trend) -1. Think of this as the amount an indication will change by if you do nothing this year and re-evaluate the indication in 1 year. Assumes all other inputs staythe same.

You have capacity to take a rate change on one of these companies this year and for the other company you will re-nn the indication next year and take a rate change. Both indications are currently at 5%. Which company would you change rates for this year and which next year, and why?

RelevantASOPs

• There are numerous <u>Actuarial Standard of Practice</u>

which are relevant to the material presented here:

- ASOP 25: Credibility Procedures
- ASOP 29: Expense Provisions in P/C Insurance Ratemaking
- ASOP 30: Treatment of Profit and Contingency Provisions and the Cost of Capital in P/C Insurance Ratemaking
- ASOP 30: Treatment of Catastrophe Losses in P/C Insurance Ratemaking

