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Agenda

knowledge of some machine learning

Context of machine learning in pricing methods that may be used to improve
GLM results and/or offer valuable
Session 1: insights in their own right in the field

of P&C insurance pricing
Decision trees

Random forests
Gradient boosting machines

Conclusions

Q&A
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Who'’'s interested in what?

y =a+ bx

v

© 2019 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only. WillisTowers Watson L:1"I'lLl



Applications of machine learning in the insurance sector
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This is not new....

Data enrichment GLMs in demand models Integrating cost and demand
Few factors, simple GLMs in auto risk models GLM refinement & LOB expansion More data enrichment
methods
1990s 2000s 2010s 2019

[13 ” . .
Other “Non-GLM” models Distributed Data Machi Integrated
Big Data isualisati achine :

visualisation learning environments

storage/ tools and services
Hadoop

Free software Data stream
NoSQL environments, and real-time
databases analytics processing
libraries supporting loT

Hyper scale
parallel
computing
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What are these machine learning methods?

e : Gradient
Classifications " " Regression )
Ensembles Earth Boosting
Trees Trees )
Machines
K-nearest : Neural . Random
Neighbors SEBIB N Networks Naive Bayes Forests

Principal
Components
Analysis

K-Means Support Vector Ridge

Machines Regression

Clustering
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Kaggle

Host Competitions Datasets Scripts Jobs Community ~ Sign up Login i Sl I S Jobs UL Siga up Lagin
. Kaggle Rankings
Welcome to Kaggle's data science PhE L E-T] 99 g
competitiens.
Download Build Kaggle users are allocated points for their performance in competitions. This page shows the current global ranking. For more
New to Data Science? information on how we calculate points, please visit the user ranking wiki page.
Choose a competition & Build a model using Upload your predictions.
he training whatever methods and Kaggle scores your
Want to learn from other's code? - . . 191,154 pts Sth 139,658 pts
5 tools you prefer. solution and shows your
Kaggler's top rated scripts = o
- score on the leaderboard.
Active Competitio Active Competitions
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Brazil Greece Russian Federation United States
. . 18 days
Santander Customer Satisfaction 3894 teams 1 ts 8th 119,501 prs oth 114,004 pts 10th 108,786 pts
Which customers are happy customers? 2478 scripts - -
$60,000 4 ‘.
11 days
Home Depot Product Search Relevance P,
Predict the relevance of search results on homedepot.com 1486 scripts
$40,000
1 . . 4.4 days 3
BNP Paribas Cardif Claims Management T Abhishek Leustagos Gert
Can you accelerate BNP Paribas Cardif's claims management process? 1692 scripts 2o i 97 co oris 45co s ons 24
$30,000 Moscow Berlin Belo Horizonte Goes
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oo o et 1o the 201 US B 699 downloads 11th 12th 100,359 pts 13th 100,128 pts 14th 99,000 prs 15th 95,403 pts
xplore data related to the ection
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Find insights in the 2013 American Community Survey dovmloads
H 147 scripts
World Development Indicators aon y Mike Kim Mario Filho
Explore country development indicators from around the world dovnloads - S N i
Washington DC Sao Paulo
South Korea United States Israel Brazil
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Is it really all about the method?

Factor
engineering

& response
variables
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Is it really all about the method?

Factor
engineering

& response
variables
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Is it really all about the method?

Factor
engineering

Methods
& response

variables
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How do you know if a method works?
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How do you measure value?

Data Gain Curve

Gini

Gini

ZD.?HS

Cumulative Fitted(%:)

Cumulative Weight(2)

Rank hold out observations by their fitted values (high to low)

Plot cumulative response by cumulative exposure

A better model will explain a higher proportion of the response with a lower proportion of exposure
...and will give a higher Gini coefficient (yellow area)
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Example results

Model Gini

GLM
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Example results

Model Gini

GLM
New Model
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Example results

Gini
improvement

Model Gini

GLM
New Model
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Example results

Model

Gini

GLM (main factor removed)

Gini
improvement

Gini rank

GLM (minor factor removed) 0.322 -1.3% 3
GLM 0.327 0.0% 2
New Model [ om0 [ 1w | 1 |
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But...

= Think of a model...
= Multiply it by 123

Square it
Add 74% billion

...and you get the
same Gini coefficient!
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Double lift chart
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Financial value estimate

= Errors in insurance pricing are not symmetrical
= Financial benefit can be estimated

Example results redacted from printed version
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Example results

Model Gini ‘ Gini Gini rank Loss r'at‘io @ | Lossratio |Loss r'at‘io @ | Lossratio
improvement elasticity 6 rank elasticity 2 rank

GLM (minor factor removed) 0.322 -1.3% 3 -0.4% 3 -0.2% <)

GLM 0.327 0.0% 2 0.0% 2 0.0% 2
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Financial value vs Gini
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Is there more to it...?

Predictive power

© 2019 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only. WillisTowers Watson L:1"I'lLl 23



Choosing a method

Dimensions of choice
Predictive power

Analytical
time and Interpretation
effort

Table
iImplementation

Execution speed
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Predictive power

Analytical
time and Interpretation
effort

Table

Execution speed .
Implementation
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What do you use where?

A it

Data science Domain experts
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It's domain expertise that helps decide

h

//////////////

llmu

Data science

Domain experts
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Some machine learning methods

e : Gradient
Classifications " " Regression )
Ensembles Earth Boosting
Trees Trees )
Machines
K-nearest : Neural . Random
Neighbors SEBIB N Networks Naive Bayes Forests

K-Means Flig(pel Support Vector Ridge
: Components . :
Clustering . Machines Regression
Analysis
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Focus on Trees
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Decision Trees

=
T
o
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Decision Trees

=
T
o
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A simple Tree example

Tree results
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-0.40
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e | nderlying trend Tree (splits=1) == == Tree (splits=2) == == Tree (splits=3) == == Tree (splits=4) = == Tree (splits=5)
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A simple Tree example

Tree results
1.40 Y N
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A simple Tree example

Tree results
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A simple Tree example

Tree results
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Shortcomings of using trees

They may miss interactions...

Slide enjoyment by equation count

... they may struggles with

~ . .
categorical variables....
~o -
~
6 =
~
> ~
4 RN
~ -~ Slide enjoyment by first initial
~ - ,
2 S o
~ - 0.8
S~ 08
1 2 4 0
= = Non-actuary Act — e
0.5
0.4
0.3
02

...and they can be bad at turning points

Slide enjoyment by word count
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Predictive power

Analytical
time and Interpretation
effort

Decision
Trees

Execution speed
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Some machine learning methods

e : Gradient
Classifications " " Regression )
Ensembles Earth Boosting
Trees Trees )
Machines
K-nearest : Neural . Random
Neighbors SEBIB N Networks Naive Bayes Forests

K-Means Flig(pel Support Vector Ridge
: Components . :
Clustering . Machines Regression
Analysis
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Focus on Random Forests

© 2019 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only. WillisTowers Watson L:1"1'lL:l 39



Random Forests

Tree 1: Prediction 1 = + Noise 1
Tree 2: Prediction 2 = + Noise 2
Tree 3: Prediction 3 = + Noise 3
Tree 1000: Prediction 1000 = + Noise 1000

Random Forest:
Prediction = AVERAGE(Tree Predictions)

- AVERAGE(Tree@

Average Noise = 0O if the trees are independent
Independence of trees achieved by fitting each tree to:
= Random subset of data (bootstrap sample)
= Random subset of factors
" , provided trees are complex enough to represent it
This is bagging (bootstrap aggregation) — fit lots of independent models and take an average
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A simple Random Forest example

Random Forest results: iteration 1
1.40 ?ﬁa
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= e Tree 1 - e Tree 2 = == Tree 3 = == Tree d = == Tree 5 = == Tree 6

= == Tree 7 == == Tree 8 == == Tree 9 == == Tree 10 e | nderlying trend Average Trend
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A simple Random Forest example

Random Forest results: iteration 2
25
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A simple Random Forest example

Random Forest results: iteration 3
..
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A simple Random Forest example

Random Forest results: iteration 5
: 252HHD
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A simple Random Forest example

Random Forest results: iteration 10
. e A
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Interpretation

Table
Implementation

Execution speed
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Some machine learning methods

e : Gradient
Classifications " " Regression )
Ensembles Earth Boosting
Trees Trees )
Machines
K-nearest : Neural . Random
Neighbors SEBIB N Networks Naive Bayes Forests

K-Means Flig(pel Support Vector Ridge
: Components . :
Clustering . Machines Regression
Analysis
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Focus on Gradient Boosting Machines

Gradient
Boosting
Machines
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Gradient Boosted Machine or “GBM”

A tree

fi(x)

Group < 5?
Yy | N
‘ I
Age < 407?
Yy | N

Group < 15?

Yy | N

—

A GBM

N
fx) =2 fn (%)

n=1

Nty e e
N
NTDHNTD AN HATIH
NZDFATIO AT HAED
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Four main assumptions

A Learning rate / “shrinkage”

= Amount by which the old model
predictions are varied for the next model Group < 57
iteration Yy | N

Old + (Prediction x Learning rate) 2 -

. v | N
Interaction depth

= Number of splits allowed on each tree Group < 15?

(or the number of terminal nodes — 1) y | N

N Number of trees (iterations) allowed —
Bag fraction

= Trees are fitted to a subset of the data
(the bag fraction) on a randomized basis

= Additional noise-reduction can be
achieved by using a random subset of
the available factors at each iteration
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A simple GBM example

GBM results at iteration O
1.2

# factors =1

Interaction depth = 1
Learning rate = 10%
Bag fraction = 100%

0.8

0.6

0.4

0.2

17 18 19 20

-0.2

-0.4

-0.6

Current fitted values

== == Current residuals

Underlying trend
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A simple GBM example

GBM results at iteration O
1.2

0.8
0.6
0.4

0.2

17 18 19 20

== == Current residuals Model trained on current residuals Current fitted values

Underlying trend
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A simple GBM example

GBM results at iteration 0
1.2

0.8
0.6
0.4

0.2

17 18 19 20

== == Current residuals Model trained on current residuals Incremental model update Current fitted values

Underlying trend
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A simple GBM example

GBM results at iteration 1

1.2

0.8

0.6

0.4

0.2

16 17 18 19 20

== == Current residuals Underlying trend Current fitted values
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A simple GBM example

GBM results at iteration 1

1.2
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0.2

16 17 18 19 20

== == Current residuals Model trained on current residuals Underlying trend Current fitted values
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A simple GBM example

GBM results at iteration 1

1.2

0.8

0.6

0.4

0.2

16 17 18 19 20

== == Current residuals Model trained on current residuals Incremental model update Underlying trend Current fitted values
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A simple GBM example

GBM results at iteration 2

A

0.8

0.6

0.4

0.2

== == Current residuals Model trained on current residuals Incremental model update

Underlying trend

Current fitted values
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A simple GBM example

GBM results at iteration 3

NED AT AN

0.8

0.6

0.4

0.2

== == Current residuals Model trained on current residuals Incremental model update

Underlying trend

Current fitted values
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A simple GBM example

GBM results at iteration 4

12 N e T

0.8

0.6

0.4

0.2

== == Current residuals Model trained on current residuals Incremental model update

Underlying trend

Current fitted values
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A simple GBM example

GBM results at iteration 5

1.2

0.8

0.6

0.4

0.2

== == Current residuals Model trained on current residuals Incremental model update

Underlying trend

Current fitted values
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A simple GBM example

GBM results at iteration 6

N NS FATE HA TR

Af%aﬂ\%

0.8
0.6
0.4

0.2

== == Current residuals Model trained on current residuals Incremental model update

Underlying trend

Current fitted values
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A simple GBM example

GBM results at iteration 7

N NS FATE HA TR

AN A SR HA S

0.8
0.6
0.4

0.2

== == Current residuals Model trained on current residuals Incremental model update

Underlying trend

Current fitted values
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A simple GBM example

GBM results at iteration 8

N NS FATE AT

0.8

0.6

0.4

0.2

)\fﬁi+)\f§i +)\§i +)\§i

== == Current residuals Model trained on current residuals Incremental model update

Underlying trend

Current fitted values
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A simple GBM example

GBM results at iteration 9

N NS FATE AT

A

0.8
0.6
0.4

0.2

NED NS AT AR

== == Current residuals Model trained on current residuals Incremental model update

Underlying trend

Current fitted values
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A simple GBM example

GBM results at iteration 10

N NI FAEE A
NI AN HAEE AN
At A

0.8

0.6

0.4

0.2

== == Current residuals Model trained on current residuals Incremental model update

Underlying trend Current fitted values
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A simple GBM example

GBM results at iteration 20

A=+ AR AT A
N I R R e
A AN AN ATt
e RN o Y D N S
A%+A%+A%ﬂ+)\§i

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

== == Current residuals Model trained on current residuals Incremental model update

Underlying trend Current fitted values

© 2016 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only. WillisTowers Watson L:1"I'lLl



A simple GBM example

GBM results at iteration 30

AT A ATt
N+ AT AT AT

1
A b N PN H At
0.8 ez = =
e RN o Y D N S
0.6 )\%4')\%4')\%4')\ u'|'
04 )\%H\%H\%H\ =+
. Ao AN H A H AT
N NI
° 1 2 20
-0.2
-0.4
-0.6
== == Current residuals Model trained on current residuals Incremental model update Underlying trend Current fitted values
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A simple GBM example

GBM results at iteration 40

1.2
: AR A NI NED
BB NS
+A%+A%+A%+A%
R Yo N A R N
06 FATEE AR AT AN
0.4
0.2
0
-0.2
-0.4
-0.6

== == Current residuals Model trained on current residuals Incremental model update

Underlying trend

AT+

Current fitted values
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A simple GBM example

GBM results at iteration 50

1.2
R N N R Nl Nt N N N
N NI AN AN NEDAATD AN D NI
AN AN AT A A A A AR
N A AT AN AR AN PN AT
AN N A AN A A A
NI A NI AA T HA
0.4 )\f%i+)\fﬁi+)\f$i@+)\fﬁi+m
NEZ AN
0.2 N
N
N\
o e NS, e ===
1 2 20
-0.2
-0.4
-0.6
== == Current residuals Model trained on current residuals Incremental model update Underlying trend Current fitted values
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A simple GBM example

GBM results at iteration 100

1.2

0.8

0.6

0.4

0.2

Current fitted values

== == Current residuals Model trained on current residuals Incremental model update

Underlying trend
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A simple GBM example

GBM results at iteration 200
1.2

R N N R - N

FATE AT AT A . e R R R
AN VEE AR AR AT AENE T TS VRS

0.8

0.6

0.4

0.2

== == Current residuals Model trained on current residuals Incremental model update Underlying trend Current fitted values

© 2016 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only. WillisTowers Watson L:1"I'lLl 71



A simple GBM example

GBM results at iteration 300

1.2

0.8

0.6

0.4

0.2

== == Current residuals Model trained on current residuals Incremental model update Underlying trend Current fitted values
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A simple GBM example

GBM results at iteration 1,000

1.2

0.8

0.6

0.4

0.2

== == Current residuals Model trained on current residuals Incremental model update Underlying trend Current fitted values

© 2019 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only. WillisTowers Watson 1 73




Calibrating the assumptions

= n-fold cross validation used to develop the interaction depth and learning rate
assumptions

= Eg for 3-fold validation, split into 3, fit on purple, test on blue parts, take average

1 2

Fit Fit Test

Fit Test Fit

Test Fit Fit

= Resulting plots can be used to determine the optimal assumption choice
= Including how many trees to run
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What does a GBM look like?
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What does a GBM look like?




What does a GBM look like?







?

= Does it work
= How does it work?




Factor importance — relative influence

The relative influence of a factor can be measured as the total reduction in error attributable to
splits by that factor, across all trees in the GBM

Vehicle Group

Vehicle Age

Driving Restriction

Vehicle Value

Age of Main Driver

Claim Free Years

Rating Area

Age of Youngest Driver
Claim Free Year Protection
Age of Youngest Additional Driver
Payment Frequency
Deductible

Sole Driver

Year of analysis

Driver and Spouse

Gender of Youngest Driver
Minimum Licence Held
Annual Mileage

Gender of Main Driver
Credit Score

Use

Number of Past Claims
Gender of Youngest Additional Driver
Marital Status Main Driver
Number of Vehicles
Number of Drivers

o
ol
=
o
=
ol
N
o
N
ol
w
o
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Partial dependency plots
Example

0.18 4
0.16 -

0.14 4

012 | Use the model to make a
¢ | prediction for observation 1
01 - (Factor = 10).

0.08 -

Model Predictions

0.06 -

0.04 -

0.02 4

i1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Factor
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Partial dependency plots

Example

Model Predictions

0.18 4

0.16 -

0.14 4

0.12 4

0.1

0.08 -

0.06 -

0.04 -

0.02 4

Vary the value of Factor only
for observation 1 and make a
range of alternative predictions.

-
-
-
- -
-
- -
= -
-

This gives the Individual
Conditional Expectation of
observation 1 across Factor.

=

6 7 8 9 10 11 12 13 14
Factor

15

16 17 18 19 20
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Partial dependency plots
Example

0.18 4

I Repeat for all observations. I

0.16 -

0.14 - ™k
rd

012 -
-

0.1

0.08 -

0.06 -

Model Predictions

0.04 -

0.02 4

i1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Factor
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Partial dependency plots
Example

0.18 4

I Repeat for all observations. I

0.16 -

0.14 - ™k
s 7

0.12 + ~ -
= - - 'd

0.1 4 ~ ”

0.08 -

0.06 -

Model Predictions
1
1
\

0.04 -

0.02 4

i1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Factor
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Partial dependency plots
Example

0.18 4

I Repeat for all observations. I
0.16 -
\\ r'd
~ 7’
0.14 - ™k ,/
-~ ’
\\\ ,, P d
S - rd e
\\~ L P d
20.127 \\\ ~~‘“- /” /,
o) ~ S - - P
(=] \\ S - - = ”
d S - ‘ ---------- - - = ’/ Pl
= 01 SS ‘\"*s ,,’ /,
g \‘ \§~~ /, ’/
el S S <o - 7
m \\ ~-‘- ”’ ’,
- 0.08 - o~ e - ~
()] \\\ -
e} S-o /’
o ‘~s~~~ ’/’
S 006 Se~—ao_o____ -7
0.04 -
0.02 -
0

i1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Factor
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Partial dependency plots

Example
0.18 4
I Repeat for all observations. I
0.16
7
~ P d
~ Vd r'd
014 4 = & /’ /,/
\*§§=:\\\ //,’/:/,:’/
~ o IS T~o _’ ’/’/,//
v 012 - ~< So \::\ \~~§ /’,’ //,/
S S TN TNz iII - e
P \\\\\\\\ ":::\~ ~"~‘ ___________ ’."—”,/’,”/
% e BN ‘\5*:\ ~~~~~ §=::=== ——————— ’::—""_/,”’ /,/
e \‘\ \‘~~~ ~~~~~~~~~~~~~~~~~ :/’, //,
a S~ o It S S i _-
— 0.08 - e s B - -
Q -~ o _-
-8 i R _ -
Soe o TT=eo The full picture of the
variation in predictions for
al all observations is the
o Individual Conditional
Expectation (or ICE) plot.
0 T T T T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Factor
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Partial dependency plots

Example

Model Predictions

0.18 4

0.16 -

0.14 4

0.12 4

0.1

0.08 -

0.06 -

0.04 -

0.02 4

Take the average prediction R
for each level of Factor.

-

==
-
- -

-
el R
-_een e e - -

- -
-
-
-
-
- e e = =

-
-
-
-
-
-
-
-
- -
- -
- -
e e e e = =

The average variation
across the factor gives the
Partial Dependency Plot

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Factor
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Partial dependency plots
Example

0.18 4
0.16 -
0.14 4 A ]
0.12 4
0.1

0.08 -

Model Predictions

0.06 -

0.04 -

0.02 4

-
-

Take the average prediction R
for each level of Factor.

-
- -
B ¥ o
Il e N - '
-—— -
~~‘=_—————’ -
-—-—--—__
C—— T — -
-- . _ - P
5‘.. - -~
il S — —— /’
-
-
-
-

The average variation
across the factor gives the
Partial Dependency Plot

16 17 18 19 20

8 9 10 11 12 13 14 15
Factor
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Partial dependency plots
Example

0.18 4
0.16 -
0.14 4
0.12 4
0.1

0.08 -

Model Predictions

0.06 -

0.04 -

0.02 4

The average variation
across the factor gives the
Partial Dependency Plot

10 11 12 13 14 15 16 17 18 19 20
Factor
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Partial dependency plots
Example

0.18 -

0.16 -
~

014 4 = ™k

0.12 -

0.1

0.08 -

Model Predictions

0.06 -

0.04 -

0.02 4

i1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Factor
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Partial dependency plots

Example
Rebasing all lines to pass through .

2 " a single point gives a sense of the 7
g interactions present in the model.
9
& o
T
©
o
2 0.08 -
?
@ oo This is a Centered
g PDP/ICE plot

" (c-PDP/c-ICE)

i1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Factor
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Partial dependency plots
Example

0.18 4

016 - Coloring the c-ICE plots by each
observation’s value of a secondary
014 1 factor can help locate the interaction. .

0.12 4

0.1

0.08 -

0.06 -

Centered Model Predictions

0.04 -

0.02 4

i1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Factor
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AD Frequency

Partial Dependency Plot Partial Dependency Plot
xAge xAgo of

Partial dependency plots etc

Partial Dependency Plot - Age of Main Driver
0.059

0.058
0.057

0.056

0.055

o05¢ Partial Dependency Plot Partial Dependency Plot
Vebice g x Vebice Group il ineracson) Vebice g x Vehice Group fmargest neracion)

B g

0.051

0.048

0048

0.047

18 20 22 24 2 28 30 32 34 36 3B 40 42 44 46 43 50 52 54 56 5B 60 62 64 66 68 70 72 74 76 78 B0 82 B4 86
Age of Main Driver

1.2
0.00 1
1.1
-0.01 1
1.04
-0.02 1
20 40 60 80 20 40 60 80
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Partial dependency plots

Advantages

= Qualitative description of properties of
relationships

= Most revealing of additive and multiplicative
relationships

20

30

Disadvantages
= “GLM view of a non-GLM thing”

= |nteraction effects outside of the chosen
subset may be obfuscated

= eg if X, X, is important and X, is averaged
out in the partial dependence plot, X; may
show as being heterogeneous, thus
obfuscating the complexity of the modelled
relationships
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Deploying GBMs

Model down into multiplicative
tables via GLMs

Age

Exposure

Burning

Vehicle

Exposure

Burning

Analytical
environ-

ment

Cost Group Cost
1 <=20 1,720 179 1 1-10 164,107 7
2 21-30 34,893 122 2 11-14 84,859 101
3 31-50 118,182 102 3 15-18 28,952 116
4 51+ 127,054 70 4 19-20 3,931 272
5 Age Total 281,849 91 5 VG Total 281,849 91

Gender Exposure Bl

Cost
1 Male 197,339 92
2 Female 84,510 87
3 Gﬁ;:f' 281,849 91

Factor
Reduction

Corner
correctors _
and pre- Establish
baked Model
interactions Hierarchy

Use insights to guide GLM

i
Next gen -

rating
engine

Main Policy
Admin System

Deploy directly
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Deploying GBMs

Pre / post
mapping

Analytical
environ-
ment

“Comfort
Diagnostics”

Next gen

rating
engine

Main Policy
Admin System

Deploy directly
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Predictive power

Interpretation

Table

Execution speed .
Implemen

Implementation
in modern
rating engines
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Practical applications of tree based methods in pricing

Streamlining
factor Price sharpening
selection
Underwriting
expansion
Geodemographic
information

Large claims pricing
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A interim summary...

Predictive power

Interpretation

Penalized
Regression

Table
Implementation

Analytical
time and Interpretation
effort

Table
Implementation

Execution speed

Neural
Networks
Predictive power
Analytical

time and Interpretation
effort

Interpretation

Random
Forests

Table
Implementation

Table

Execution speed
Implementation

Execution speed
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0% “5° 0% ©20
Machine Learning in Pricing o®
Conclusions (Part 1) e = )
0e®

= There are many forms of ML models

= New data and feature/response engineering generally add more value than new methods
BUT we need to continuously explore which methods work on which problems

= Traditional measures of prediction value may not reflect applications in insurance
= And it's not all about predictive power anyway — other criteria are important

= GBMs can provide predictive lift benefits by capturing higher order effects ... BUT
= Can you cope with not seeing the model and instead use broad diagnostics
= Effortis required to expose/understand higher order effects in an expeditious manner
= How will business leaders and regulators respond to this method?
= Do you have the software and hardware to fit to large dataset
= Do you have a rating engine that can implement a GBM

= More methods, insights and conclusions to follow in Part 2...
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What’s coming in Session 2?

knowledge of some machine learning
methods that may be used to improve
GLM results and/or offer valuable

insights in their own right in the field
of P&C insurance pricing

Context of machine learning in pricing

Session 2:

“Earth”
Penalized regression
Neural networks

Conclusions

Q&A
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Questions
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e WO Y . B

CAS Ratemaking & Product Management Seminar
Overview and Practical Application of Machine Learning
Methods in Pricing — Part 2

Wednesday March 27, 2018

Ben Williams, Graham Wright

LR
3 - =

f"..‘_c‘:- ——"s

2 v
P
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Agenda

knowledge of some machine learning
methods that may be used to improve
GLM results and/or offer valuable

insights in their own right in the field
of P&C insurance pricing

Context of machine learning in pricing

Session 2:

“Earth”
Penalized regression
Neural networks

Conclusions

Q&A
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What are these machine learning methods?

e : Gradient
Classifications " " Regression )
Ensembles Earth Boosting
Trees Trees )
Machines
K-nearest : Neural . Random
Neighbors SEBIB N Networks Naive Bayes Forests

Principal
Components
Analysis

K-Means Support Vector Ridge

Machines Regression

Clustering
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This is not new....

Data enrichment GLMs in demand models Integrating cost and demand
Few fact?hrsasimple GLMs in auto risk models GLM refinement & LOB expansion More data enrichment
methods
1990s 2000s 2010s 2019

Other “Non-GLM” statistical models Distributed _
: Data Mach Integrated
Big Data isualisati achine :
visualisation |eaming environments

storage/ tools and services
Hadoop

Free software Data stream
NoSQL environments, and real-time
databases analytics processing
libraries supporting loT

Hyper scale
parallel
computing
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Is it really all about the method?

Factor
engineering

& response
variables

© 2019 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only. WillisTowers Watson §L:1'I'L:l 108



Choosing a method

Dimensions of choice
Predictive power

Analytical
time and Interpretation
effort

Table
implementation

Execution speed
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It's domain expertise that helps decide

h

//////////////

llmu

Data science

Domain experts
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Financial value estimate

= Errors in insurance pricing are not symmetrical
= Financial benefit can be estimated

Example results redacted from printed version
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lllustrative results

Model Gini ‘ Gini Gini rank Loss r'at‘io @ | Lossratio |Loss r'at‘io @ | Lossratio
improvement elasticity 6 rank elasticity 2 rank

GLM (minor factor removed) 0.322 -1.3% 3 -0.4% 3 -0.2% <)

GLM 0.327 0.0% 2 0.0% 2 0.0% 2
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Some machine learning methods

e : Gradient
Classifications " " Regression )
Ensembles Earth Boosting
Trees Trees )
Machines
K-nearest : Neural . Random
Neighbors SEBIB N Networks Naive Bayes Forests

K-Means Flig(pel Support Vector Ridge
: Components . :
Clustering . Machines Regression
Analysis
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Focus on “Earth”
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Multivariate adaptive regression splines (“Earth”)

AD claim frequency

21232527 2931333537 3941434547 495153 5557 596163 6567 697173757779 8183 85
Age
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Multivariate adaptive regression splines (“Earth”)

Categorical factors

Intercept -2.958
DR=I10D 0.082

>

o

c

()
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o
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Bt

£

<

o

2 -_— -_— -_— -_— -_— -_— -_— -_— -_—

Insured Only  Insured & Insured & 1  Insured & 2+ Insured & Any Insured & Any

Driver Spouse Named Named 30+
Driving Restriction
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Multivariate adaptive regression splines (“Earth”)
Categorical factors

Intercept -2.869
DR=1&S -0.198

>

o

c

Q

S

o

o

£

<

(@] -_— -_— -_— -_— -_— -_— o

(a)

<

Insured Only  Insured & Insured & 1  Insured & 2+ Insured & Any Insured & Any
Driver Spouse Named Named 30+

Driving Restriction
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Multivariate adaptive regression splines (“Earth”)
Categorical factors

Intercept -2.905
DR=I&1N -0.120
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Multivariate adaptive regression splines (“Earth”)

Categorical factors

Intercept -2.905
DR=I1&2N -0.111

>
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()
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<
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Driving Restriction
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Multivariate adaptive regression splines (“Earth”)

Categorical factors

Intercept -2.920
DR=1&Any30+ 0.162
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Multivariate adaptive regression splines (“Earth”)

Categorical factors

Intercept -2.945
DR=I&Any 0.749

>

o

c

Q

S

o

)

Bt

£

<

o

2 -_— -_— -_— -_— -_— -_— -_— -— -_—

Insured Only  Insured & Insured & 1  Insured & 2+ Insured & Any Insured & Any
Driver Spouse Named Named 30+

Driving Restriction
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Multivariate adaptive regression splines (“Earth”)

Numerical factors

AD claim frequency

Intercept -2.815
MAX(30-Age,0) 0.051
MAX(Age-30,0) -0.006

212325272931333537394143454749515355575961636567697173757779818385

Age
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Multivariate adaptive regression splines (“Earth”)

Numerical factors

AD claim frequency

Intercept -2.931
MAX(40-Age,0) 0.025
MAX(Age-40,0) -0.003

212325272931333537394143454749515355575961636567697173757779 818385

Age
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Multivariate adaptive regression splines (“Earth”)

Numerical factors

AD claim frequency

Intercept -3.026
MAX(50-Age,0) 0.017
MAX(Age-50,0) 0.000

212325272931333537394143454749515355575961636567697173757779 818385

Age
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Multivariate adaptive regression splines (“Earth”)

Numerical factors

AD claim frequency

Intercept -3.143
MAX(65-Age,0) 0.013
MAX(Age-65,0) 0.011

212325272931333537394143454749515355575961636567697173757779 818385

Age
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Multivariate adaptive regression splines (“Earth”)

Interactions

AD claim frequency

Intercept -3.143
MAX(65-Age,0) 0.013
MAX(Age-65,0) 0.011

212325272931333537394143454749515355575961636567697173757779818385

Age
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Multivariate adaptive regression splines (“Earth”)

Interactions
’ Intercept -3.143
MAX(65-Age,0) 0.013
MAX(Age-65,0) 0.010

MAX(Age-65,0)*(Gender=F) 0.003,

AD claim frequency

212325272931333537394143454749515355575961636567697173757779818385
Age
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Multivariate adaptive regression splines (“Earth”)

Interactions

Intercept -3.131
MAX(65-Age,0) 0.011
MAX(Age-65,0) 0.011,
MAX(65-Age,0)*MAX(VG-12,0) 0.004
MAX(65-Age,0)*MAX(12-VG,0) -0.001
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2123252729313335373941434547495153555759616365676971737577 79818385
Age

© 2019 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only. WillisTowers Watson L:1"I'lLl

128



Multivariate adaptive regression splines (“Earth”)

Advantages Disadvantages
=  Minimum manual setup required = Model will contain discontinuities around knot points
= Fast run time = Hand-crafting likely to improve results

= Highly interpretable results

Intercept

0.412

UsuallyPayANNUAL

0.543

h(Log_Premium — 6.314)

0.432

h(Age-35)

-0.329

UsuallyPayANNUAL * h(Log_Premium-6.5673)

0.00654

Homeowner

-0.0291

etc
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How might “Earth” be applied?

= Historically pricing models have been fit by coverage and/or peril — are these still
the most suitable splits?

= When should models be split/combined? (e.g., homeowners and landlords policies
or fire and lightning perils)

= How many models should we build and what should they predict?
= Increasing use of machine learning to answer these structural/strategic questions
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Predictive power

Analytical
time and Interpretation
effort

Table

Execution speed .
Implementation
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Some machine learning methods

e : Gradient
Classifications " " Regression )
Ensembles Earth Boosting
Trees Trees )
Machines
K-nearest : Neural . Random
Neighbors SEBIB N Networks Naive Bayes Forests

K-Means Flig(pel Support Vector Ridge
: Components . :
Clustering . Machines Regression
Analysis
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Focus on Penalized Regression
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Penalized Regression
Overview

GLMs
= Predictions are given by f(x) = g(X.p)
= [ is estimated by minimizing a loss function L(B|X,y) (X is data & model, y the response)

Penalized regression
= The same, except the objective function becomes L(B|X,y) + L. “Penalty on 3"

Elastic Net

Minimize: L(B|X,y) +|4; 218 H| A, X; B

Lasso - just the blue part
= Penalty reduces insignificant parameter values to zero — useful for variable selection

Ridge - just the purple part regression models
= Penalty heavily penalize extreme parameters, but do not reduce parameters to zero
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Penalized Regression
GLM

f(x) = g’3(X.p) where B estimated by minimizing L(8|X,y)

Parameter 2

20.10 005 0.00 0.05 0.10
Parameter 1
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Penalized Regression
GLM Lasso Ridge

f(x) = g1(X.p) where B estimated by minimizing L(B|X,y) +H4, z_lﬂil +| 4, Z,Blz
l l

Elastic Net

Elastic Net Lasso XI5l

loss
-2

-3

Parameter 2

Parameter 2
Parameter 2

20.10 005 0.00 0.05 0.10 0.10
Parameter 1

005 0.00 0.05 0.10 20.10 005

0.00 0.05 0.10
Parameter 1

Parameter 1

Heavily penalize large parameters, . Penalty reduces insignificant parameter
Mix of the two . .
but does not reduce parameters to zero values to zero - useful for variable selection
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Penalized Regression
GLM Lasso Ridge

f(x) = g1(X.p) where B estimated by minimizing L(B|X,y) +H4, Z_I,Bil +| 4, Z,Blz
l l

Elastic Net
Elastic Net Lasso XI5l
0.10 1
0.051
() (o] (o]
B B B
@ @D @D 0004
m m m
o o o
0.05-
0.104
410 008 0.00 0.05 0.10 010 005 0.00 0.05 0.10 010 005 0.00 0.05 0.10
Parameter 1 Parameter 1 Parameter 1

Heavily penalize large parameters,

. Penalty reduces insignificant parameter
Mix of the two
but does not reduce parameters to zero

values to zero - useful for variable selection

WillisTowersWatson Ll*I'ld 137



Penalized Regression
Parameter selection

= Minimize: L(B|X,y) + 4 Xl Bil + A, X; B
= Penalty parameters can be re-written: 1, =1a, A,=141 (1_7“)

= o controls the mixture between Lasso (@ = 1) and Ridge (a = 0)
= A controls the overall size of the penalty
= A, a selected using cross-validation

= Factors automatically
selected from initial set!

Optimal (a, 1)
combination

S
o
P —
S
(]
c
§e]
=
©
=
©
5
)
0
o
 —
© 32
To) o O
™ © Q-
O NP ®o A
~ Qo D .
SoREIRY 8 oo, > O
PO 0 G s L0 8ma R d g Q°
PR C o stNOeRAIN A < o
FENNNN Yo S g B o © alpha
l'lmCD-.'vl\‘_'
I R I T
T 9 o
log(lambda) v
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Penalized Regression
Parameter selection - example

Mean model

d

The o/ A combination
minimizing the cross Simple factor
validation error is: GLM

a=061=e"’

Cross validation error

2 25 3 35 -4 45 5 55 6 65 -7 75 -8 85 -9 -95 -10 -105 -11  -Inf
log(Lambda)

Alpha=1 e——Alpha=0.8 e=——Alpha=0.6 =——Alpha=04 =—Alpha=0.2 =Alpha=0

Models range from Lasso (o =1) to Ridge (o =0)
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Penalized Regression
Parameter selection - example

= The fitting process can be investigated to help with feature selection

é e Alpha = 0.6
o
7=
© 9
O®
e
. T
As size of penalty = 2 25 3 35 4 45 5 55 -6 65 -] -7.5 -8 -85 -9 -95 -10 -10.5 -11 -Inf
decreases, log(Lambda
parameters begin 1 Parameters that are
emerge as non-zero | ., still zero at the
" B optimal lambda
= could be discarded
>
£ 04
S
S
g 0.2
o
0
-0.2

Log(lampda)
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Penalized Regression
Parameter selection

There are costs to allowing too many factors in our models

= Computational cost of processing more data / fitting more parameters

= Time cost of analysts needing to consider more potential effects

= Reduced comprehensibility of interplay of many different correlated effects in our models

= Financial cost of licensing and maintaining many different data sources, and
hosting/updating tables to use them in rating

= Performance cost as increased number of tests makes it more likely that we will find
false-positives and overfit to noise in our data
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Penalized Regression
Vehicle classification — categorical factors

Exposure|# Claims|Policy Factors | Ext Codell Vehicle Makel ... | Engine Size Make = Ford | Make = Honda |...| Make = Porsche
1 0 s 0000001 Ford ... 1400 1 0 0
1 1 0000002 Porsche ... 3000 0 0 1
0.5 0 0000001 Ford ... 1400 1 0 0
1 0 0000001 Ford ... 1400 1 0 0
0.5 1 0000003 Honda 0 1 0
1 0 0000002 Porsche 0 0 1
1 0 0000001 Ford 1 0 0
0.5 0 0000003 Honda 0 1 0
0.3 0 0000003 Honda 0 1 0
1 1 0000002 Porsche 0 0 1
1 0 0000001 Ford 1 0 0
= One 0-1 column per level (excluding base) BB B B B Pase) B B B
— - D - S S - S >
= Equivalent to adding a “simple factor” to a
GLM
1 — 1 —
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Penalized Regression
Vehicle classification — numerical factors

Engine Size = 1300 |...

Engine Size = 3000

Exposure|# Claims|Policy Factors | Ext Code | Vehicle Make Engine Size
1 0 0000001 Ford 1400
1 1 0000002 Porsche 3000

0.5 0 0000001 Ford 1400
1 0 0000001 Ford 1400
0.5 1 0000003 Honda 1300
1 0 0000002 Porsche 3000
1 0 0000001 Ford 1400
0.5 0 0000003 Honda 1300
0.3 0 0000003 Honda 1300
1 1 0000002 Porsche 3000
1 0 0000001 Ford 1400

flexibility, but loses knowledge of ordering

Adding one 0-1 column per value/band allows full

0 0

0 1

0 0

0 0

1 0

0 1

0 0

1 0

1 0

0 1

0 0
BB Bbase) B B B
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Penalized Regression
Vehicle classification — numerical factors

Exposure|# Claims|Policy Factors | Ext Code | Vehicle Make |.. |Engine Size Engine Size | (Engine Size)*2|...|(Engine Size)"5
1 0 " 0000001 Ford .. 1400 1400 1960000 . 5.38E+15
1 1 0000002 Porsche .. 3000 3000 9000000 ... 2.43E+17

0.5 0 0000001 Ford .. 1400 1400 1960000 ... 5.38E+15
1 0 0000001 Ford .. 1400 1400 1960000 ... 5.38E+15
0.5 1 0000003 Honda .. 1300 1300 1690000 3.71E+15
1 0 0000002 Porsche .. 3000 3000 9000000 ... 2.43E+17
1 0 0000001 Ford .. 1400 1400 1960000 ... 5.38E+15
0.5 0 0000003 Honda .. 1300 1300 1690000 3.71E+15
0.3 0 0000003 Honda .. 1300 1300 1690000 3.71E+15
1 1 0000002 Porsche .. 3000 3000 9000000 ... 2.43E+17
1 0 0000001 Ford .. 1400 1400 1960000 ... 5.38E+15

= Adding variates retains ordering, but limits flexibility

= Model fit also impacted by scale of x-values as
parameters are scaled, affecting the penalty size

= Orthogonal variates/splines can help with scaling and
convergence

f1x + Box? + - + Psx®
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Penalized Regression
Vehicle classification

Exposure|# Claims|Policy Factors | Ext Code | Vehicle Make |..  |Engine Size Engine Size <= 1300|...|Engine Size <= 3000

1 0 s 0000001 Ford .. 1400 0 ... 1

1 1 0000002 Porsche . 3000 0 1

0.5 0 0000001 Ford . 1400 0 1

1 0 0000001 Ford . 1400 0 1

0.5 1 0000003 Honda . 1300 1 1

1 0 0000002 Porsche .. 3000 0 1

1 0 0000001 Ford . 1400 0 1

0.5 0 0000003 Honda .. 1300 1 1
0.3 0 0000003 Honda .. 1300 1 1

1 1 0000002 Porsche . 3000 0 1

1 0 0000001 Ford . 1400 0 1

B
. «— f
— f
= ——

B

a
v

= Adding a series of “less than or equal” indicators
retains as much flexibility as a column per band, and
also retains knowledge of ordering — — 1 —
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Deploying Penalized Regression

Same as GLMs!

Age Exposure Loss MG Exposure Loss
Cost Group Cost
1 <=20 1,720 179 1 1-10 164,107 77
2 21-30 34,893 122 2 11-14 84,859 101
3 31-50 118,182 102 3 15-18 28,952 116
4 51+ 127,054 70 4 19-20 3,931 272
5 Age Total 281,849 91 5 VG Total 281,849 91
Gender Exposure Loss
Cost
1 Male 197,339 92
2 Female 84,510 87
3 | Gender 281,849 o1
Total
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Predictive power

Analytical
time and Interpretation
effort

Penalized

Regression

Table

Execution speed .
Implementation
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Practical applications of regression methods in pricing

Streamlining
factor
selection

Lasso Ridge
Geodemographic |
information l LBIX,y)HA ) Bl |2, ) Bf
: GLM : :
|

zzzzzzzz

nnnnnnnn
sssssssss

zzzzzzz

eeeee

Simplification of ML models
to improve interpretability

Vehicle
clustering
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Some machine learning methods

e : Gradient
Classifications " " Regression )
Ensembles Earth Boosting
Trees Trees )
Machines
K-nearest : Neural . Random
Neighbors SEBIB N Networks Naive Bayes Forests

K-Means Flig(pel Support Vector Ridge
: Components . :
Clustering . Machines Regression
Analysis
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Focus on Neural Networks
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Start with a simple GLM...

Log link function, g

Age (piecewise-linear variates)

F (indicator of Gender = Female)
Age x Gender interaction

gw) = Po +pif1(Age)+ Bof2(Age)+Psfs(F) + Pafs(Age, F)

0.06
0.05
0.04
3 0.03
0.02

0.01

—_N F

willistowerswatson.com WillisTowersWatson Lil'I'IL:id 151
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We can represent GLMs as a network...

1 Age F Input layer

fa(Age, F) I Hidden layer I

N

g+ P +1H1f1(1493)+ szz(Age) +|83f3(F)+|8

I Weights I

uw=g"*ZBf;) I Output layer I

willistowerswa tson.co m WillisTowersWatson Ll*I'ld 152
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We can represent GLMs as a network...

1 Age F Input layer

1 fi(Age) f2(Age)| | f3(F) fa(Age, F) I Hidden layer I

Bo B B2 B3 Ba I Weights I

uw=g"*ZBf;) I Output layer I

willistowerswa tson.co m WillisTowersWatson Ll*I'ld 153
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We can represent GLMs as a network...

F Input layer

1 f1(Age) f2(Age)

fs(F) | |fa(Age,F] | Hidden layer

" 1
" fa

Hidden layer represents our manually
engineered features:

" fo=1
" f, = max(65 — Age,0)
= £, =max(Age — 65,0)

F
max(Age — 65 —100(1 — F),0)

Activation function breaks linearity:
ReLU(x) = max(x, 0)
(*Rectified Linear Unit)

Universal approximation theorem:
We can approximate (almost*) any
function arbitrarily well with a single
hidden layer

(*continuous, on compact subsets)

General form:
" fi = ReLU(w; o +w;Age + w;,F)

willistowerswa tson.com

WillisTowers Watson L«l*"I*Ll
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We can represent GLMs as a network...

1 Age F Input layer

1 fi(Age) f2(Age)| | f3(F) fa(Age, F) I Hidden layer I

Bo B B2 B3 Ba I Weights I

uw=g"*ZBf;) I Output layer I

willistowerswa tson.co m WillisTowersWatson Ll*I'ld 155
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Generalizing to neural networks

Input layer (LO): x;

| Weights: w;; |

f2

f3

fa

| Hidden layer (L1): f; = hy (S;wyjx;) |

| Weights: g; |

| Output layer (L2): u = hz(zjﬁjfj) |

willistowerswa tson.co m
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Generalizing to neural networks
Model structure decisions

1 Xq Xy " Input features

" Number of hidden layers
" Size of each hidden layer
" Activation functions

= Typically specified by layer
" ReLU is most commonly used

" Connectivity of layers and weight sharing

" Typically fully connected with unique
weights

U " Many variants exist, eg: Convolutional
Neural Networks for image classification
connect nearby blocks of pixels and apply
the same shared weights across each
block

willistowerswatson.com WillisTowers Watson Ll"I'lil 157
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Generalizing to neural networks
Key model fitting decisions

1 X1 X2
1 fi f> fa || fa
U

Optimization algorithm
" Typically variants of Back-Propagation
Loss function — to be minimized

Batch size — number of rows to consider in
each iteration

Epochs — number of passes through full data
Initial weights
Regularization parameters, eg:

" L1/L2 penalties

" Learning rate and decay

" Dropout

willistowerswa tson.com
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Generalizing to neural networks

1 X; X Input layer (LO): x; “Deep learning”
refers to multiple
|Weights: wy; | hidden layers

1 fi 21| 51| /s | Hidden layer (L1): f; = hy(Z;w;ijx;) |

| Weights: vj; |

1 91 92 93| | 94 |Hidden layer (L2): gy = hz(Zjvjkfj) |

I Weights: g, I

U Output Iayer (L3) U= h3(2kﬁkgk)
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Generalizing to neural networks
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Where is the value?

Which policyholder is more
likely to make a claim?

AD claim frequency

212325272931 3335 3739 414345 4749 5153 5557 506163 6567 6971737577 7981 8385
Age

willistowerswatson.com WillisTowersWatson LI"I'IL:|d 161
© 2019 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.



Where is the value?

Which picture is more likely
to be of a cat?

willistowerswatson.com WillisTowers Watson Lil*"I'Ll 162
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Where is the value?

Which picture is more likely
to be of a cat?
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Neural networks
Evolution or revolution?

e £AR)

KEEP
CALM

AND

START
A REVOLUTION
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Neural networks
Case study — market models

Context
" UK aggregator sites provide some historic quote data

" We wanted a model of “Average top 5 premium” for auto quotes to understand the
market’s pricing structure

" One month of data (~1m quotes)
" Limited subset of factors (no data enrichment beyond simple rating area & vehicle group)

Approach
= 60/40 split for training and holdout data

" Modelled as Log-Normal (ie In(Premium) ~N(u, 62)) as Normal distributions well
supported across packages

® Compare Neural Network performance to GLM (using existing model parameterizations)
and GBM with RMSE of log-Premium on holdout data
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Neural networks
Case study — GLM benchmark

Model Test error Training error

GLM 34.7% 34.0%
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Neural networks
Require some work!
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Practical applications of neural networks in pricing

'O :
| |
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| |
| |
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| |
| |
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Marketing Underwriting

Claims Asset
management / management

Customer

and and risk

management

Distribution management
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Analytical
time and Interpretation
effort

Neural
network

Execution speed
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A fuller summary...

Predictive power

Interpretation

enalised
Regression

Table
Implementation

Table

Execution speed
Implementation

Analytical
Analytical time and
time and Interpretation effort
effort

Interpretation

Table

Execution speed -
Implementation

Table

(BT st Implementation

Analytical
time and Interpretation

effort
Neural
Networks

Predictive power

Execution speed

Analytical
time and Interpretation
effort

Interpretation

Random
Forests

Table
Implementation

Table
Implementation

Execution speed
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Machine learning in pricing oo ©° oTe ©-©

Conclusions (Part 2) Se® ‘e @
o®e ©; o
e [ e

= Machine learning brings a proliferation of new methods

= |Improving models is more than just finding the best method. Consider:
= What data are available and how can data be transformed to give insight
= What is the optimal model structure and target variable?
= How can information be transferred between models?

= Earth is a fast, interpretable method that can improve overall lift by informing
when/where to segment models

= Neural networks are complex and require numerous input decisions; analyzing
unstructured data (e.g., imagery) is an intuitive application for this method ... but where
else may it be helpful?

= Penalized regression can aid in factor selection decisions and may in fact be a good
method in its own right — particularly when the modeler has less of a “feel” for the data

= Machine learning in pricing is not all about improving predictive power. Consider:

= Fast investigation of new data
= Quick assessment and response of emerging experience
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So what? How is the US market doing with machine learning
Some critical success factors

Data availability Static
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What are the three biggest challenges preventing your company from
becoming more data driven? (Q.21)

Infrastructure/Data warehouse constraints

Data accessibility/not easily integrated

IT/Information services bottlenecks/Lack of coordination— 33%

Conflicting priorities/Executive buy-in
Data volume/quality/reliability

Data capture/availability

Lack of expertise to analyze data
Lack of sufficient staff to analyze data
Lack of clarity on strategy

Lack of tools to analyze data
Regulatory concerns

Privacy concerns

Technology concerns (e.g., cyber risk, systems failure)
Other

None of these — being data driven is not important to us

Base: U.S. respondents (n = 51)

31%

31%
T ——
——
e~
I

.

.

B 2%

2%

B 2%

0%

51%

41%
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So what? How is the US market doing with machine learning
Some critical success factors

Appetite to try new methods Slowly upward

© 2019 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only. WillisTowers Watson §L:1'I'L:l 174



So what? How is the US market doing with machine learning

Methods used

Underwriting/Pricing

Generalized linear models
(GLMs)

One-way analyses

Decision trees

Model combining methods
(e.g., stacking, blending)

Gradient boosting machines
(GBMs)

Random forest (RF)
Penalized regression
methods (e.g., lasso, ridge,
elastic net)

Neural networks

Generalized additive
models (GAMSs)

Support vector machines

I
I 5%
55%
41%
BN 57%
41%
41%
BN 37%
I 7%
B 20%

Claims
N 75
54%

54%

41%
B 0%
B 9%

Marketing

I 619
58%

L
B o7
P 24%
I 30%
P 27%
P 2a%
B 2%
B 2%

Base: U.S. respondents using advanced analytics for underwriting/pricing (n = 49), claims (n = 37) and/or marketing (n = 33)
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So what? How is the US market doing with machine learning
Some critical success factors

Component Rating Directional trend

Modeling tools and platforms Slowly upward
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Cloud-based environments and Hadoop

Regardless of size, insurers are actively exploring technology to manage big data

Small
Exploring Exploring | Now Exploring

Cloud-based (Amazon Web
Services, Azure)

Hadoop 0% AV

48% 50% 0% 40%
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So what? How is the US market doing with machine learning
Some critical success factors

Internal skill sets ? Slowly upward

“‘We’re also seeing an influx of quantitative talent to the insurance industry. In
addition to actuaries, insurers are hiring statisticians, data scientists, marketing
scientists and behavioral scientists. The industry is challenging these professionals
to solve a wider range of problems across the customer value chain”

- Recent article by Claudine Modlin and Graham Wright
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What are the three biggest challenges preventing your company from
becoming more data driven? (Q.21)

Infrastructure/Data warehouse constraints 51%

Data accessibility/not easily integrated 41%

IT/Information services bottlenecks/Lack of coordination 33%

Conflicting priorities/Executive buy-in 31%

Data volume/quality/reliability 31%

Data capture/availabil_ 28%

24%

Lack of expertise to analyze data

ack of sufficient staff to analyze data 26%

Lack of clarity on strategy 12%
Lack of tools to analyze data - 6%

Regulatory concerns - 4%

Privacy concerns . 2%

Technology concerns (e.g., cyber risk, systems failure) 2%
Other . 2%

None of these — being data driven is not importanttous 0%

Base: U.S. respondents (n = 51)
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So what? How is the US market doing with machine learning
Some critical success factors

Measuring value Static
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How do you determine the value of your advanced analytic models? (Q.11)
How well understood are your advanced analytic models by those who need
to use them, outside of the modeling team? (Q.12)

Measures used to determine value of Level of understanding of advanced analytics
advanced analytics models models outside of the modeling team

Points saved on loss ratios 81%

Very strong/Extensive 0%

More efficient use of resources 49%

Strong - 17%

Stronger control over portfolio 44%

32%

27% Not at all/Very limited - 22%

= Early identification of large claims
= Improved response rate

Able to cut claim costs

Faster processing time

Other

5%

None of these — we haven’t
identified measures of value for our . 12%

advanced analytical models

Base: U.S. respondents using advanced analytics to evaluate fraud potential (n = 41)
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So what? How is the US market doing with machine learning
Some critical success factors

Application ? Slowly upward
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For which aspects of underwriting/pricing does your company
group currently use or plan to use advanced analytics? (Q.2)

Rating/Pricing 72% 22% 6%

Underwriting/Risk selection 53% 37% 10%

Automation (e.g., straight-through processing) 30% 37% 33%

Report ordering (e.g., MVR, CLUE) 26% 37% 37%

Loss control 10% 45% 45%

Cession to residual market or facultative reinsurance Rl 49 94%

[ |

m Currently use Plan to use within two years ® Do not use and no plans to use

Base: U.S. respondents using or planning to use advanced analytics for underwriting/pricing (n = 51)
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For which aspects of claims does your company group currently
use or plan to use advanced analytics? (Q.4)

Evaluation of claims for fraud potential 26% 56% 18%

Claim triage (identification of complex claims to triage claim workflow) 26% 54% 20%

Evaluation of claims for litigation potential 15% 59% 26%

Evaluation of claims for subrogation potential 13% 49% 38%

m Currently use Plan to use within two years ® Do not use and no plans to use

Base: U.S. respondents using or planning to use advanced analytics for claims (n = 39)
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Beyond underwriting/pricing and claims, in which other areas
does your company group currently use, or plan to use, advanced
analytics? (Q.9)

Reserving
Aggregate reserving L/ 20% 74%

Case reserving L% 25% 71%

Expense management

Marketing
Customer profiling/segmenting 37%
Acquisition strategy/Target marketing 29%

Product design/tailoring  [lEZ) 25% 69%

Agency/Broker management

Agency/Broker management 12% 14% 74%

m Currently use Plan to use within two years ® Do not use and no plans to use

Base: Total U.S. respondents (n = 51)
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Machine learning beyond pricing

= Carriers are experimenting with ML, it is becoming established within insurance
analytics

= |t opens up a broader set of problems to analytics, and offers a broader tool set
for familiar problems

= New (wider) data beats new methods — think UBI!

= Factor definition, problem specification and method selection are critical for
success

= There’s opportunity to reveal actionable, first-order insights in applications to
which analytics have not been deployed previously

= With this broad new opportunity, spotting strong initial use cases is important
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Questions
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