
Machine Learning in Python using Scikit-
Learn

The Problem:

Can we identify the Line of Business of loss data from a loss triangle?

This notebook is inspired by a talk by Clark, Ranglova and Oda at the 2017 CLRS

The Dataset

CAS Loss Reserve Database for Workers' Compensation, Medical Malpractice, and
Private Passenger Auto
Top 19 companies with remainder of industry as 20th observation
Volume-weighted LDFs generated
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1-2 2-3 3-4 4-5 5-6

GRNAME LOB

Alaska Nat
Ins Co

wkcomp 2.042044 1.204090 1.078956 1.039735 1.01944

Allstate
Ins Co Grp

wkcomp 2.222958 1.337730 1.158433 1.092734 1.05864

Amerisafe
Grp

wkcomp 2.083829 1.230349 1.049066 1.015398 1.01142

Associated
Industries
Ins Co

wkcomp
2.108629 1.353189 1.184505 1.078169 0.97430

Beacon
Mut Ins Co

wkcomp 2.245266 1.342916 1.156806 1.089594 1.00000

import pandas as pd
ldf = pd.read_csv(
    r'https://raw.githubusercontent.com/PirateGrunt/paw_rpm/master/notebo
    index_col=['GRNAME','LOB'])
ldf.head()



What is Scikit-Learn?
Machine Learning in Python

Simple and efficient tools for data mining and data analysis
Accessible to everybody, and reusable in various contexts
Built on NumPy, SciPy, and matplotlib
Open source, commercially usable - BSD license

scikit-learn covers the majority of supervised and unsupervised ML techniques available
today and is continually expanding

It's all about the API

sklearn is the defacto standard Machine Learning API for Python. Other libraries yield to the
simplicity of its API.

Want to do some Keras Deep learning? No problem, just use 
keras.wrappers.scikit_learn
XGBoost anyone? Use: xgboost.sklearn
Don't want to learn the syntax for the Light GBM? lightgbm.sklearn to the rescue.
Natural langauge processing requires unique functionality, right? Nope, 
nltk.classify.scikitlearn



Scikit-learn is a consistent API for all Machine Learning Algorithms

Estimators are the building block of scikit-learn. Almost everything is an estimator. All
estimators have fit() methods. Most have either a predict() or transform() method.
Supervised techniques generally have a score() method as well.

The basic ML workflow looks like this:

from sklearn.EstimatorFamily import Estimator 
est = Estimator(hyperparameter_1, ... ,hyperparameter_n) # Create a model 
est.fit(X_train, y_train) # Fit the model 
est.score(X_test, y_test) # Evaluate model efficacy 
est.predict(X_test) # Create predictions

Importing your estimators

from sklearn.EstimatorFamily import Estimator is typically how you'd import an
estimator. Some examples are:

from sklearn.linear_model import RidgeRegression 
from sklearn.ensemble import RandomForestRegressor, 
GradientBoostingClassifier 
from sklearn.naive_bayes import GaussianNB 
from sklearn.cluster import KMeans 
from sklearn.neighbors import KNeighborsClassifier
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Hyperparameters of your estimarors (Controlling how your estimator fits)

Instantiating an estimator typically looks like est = Estimator(hyperparameter_1, ... 
,hyperparameter_n). Upon instantition you have the option of setting hyperparameters (i.e.
parameters whose values are set before the learning process). All hyperparameters have
defaults that may or may not be satisfactory for your particular problem.

Exmaples of setting initial hyperparameters on an estimator:

rr = RidgeRegression(alpha=0.5, fit_intercept=False, normalize=True) 
knc = KNeighborsClassifier(n_neighbors=10) 
gbc = GradientBoostingClassifier()

Transformers - a special kind of estimator

Several sklearn estimators implement a transform() method. Transformers are typically
used to 'transform' your featureset in a way that will improve another algorithms (e.g.
regressor, classifier) performance.

Typical examples include:

from sklearn.neighbors import KNeighborsClassifier



sklearn.preprocessing.PCA # Principle Components transformation 
sklearn.preprocessing.OneHotEncoder # Categorical to dummy transformation 
sklearn.preprocessing.StandardScaler # Removing the mean and scaling to 
unit variance for each feature 
sklearn.preprocessing.LabelEncoder # Single-column label to integer 
tranformation
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LabelEncoder()

Mutating the Estimator with fit()

Though it looks like nothing happened, a lot happened under the hood. Our estimator has
seen data can now be applied to new datasets. Once an estimator is fit, it spin off useful
metadata that describes the fit model. sklearn uses a trailing underscore in property names
to help users distinguish between hyperparameters and the new metadata.

from sklearn.linear_model import LinearRegression 
lr = LinearRegression(fit_intercept=False) 
lr.fit(X, y) 
print(lr.fit_intercept) # A hyperparameter.  Returns False. 
print(lr.coef_) # Trailing underscore denotes the property comes from a 
'fit'.  Returns model coefficients.

Additionally the predict, transform, and score methods (if applicable) become available.
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array(['medmal', 'ppauto', 'wkcomp'], dtype=object)

Supervised Learning Example - Identifying the line of business of an
unlabeled triangle

We've computed the volume weighted development patterns of twenty companies for each
line of business, wkcomp, comauto, and ppauto and want to use them to train a Machine
Learning model that can identify the appropriate line of business.

Defining this problem more concretely: 
The LDFs are our featureset, X, and the known line of business is our response, y.
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from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
response = ldf.index.get_level_values('LOB')
le.fit(response)

le.classes_

X = ldf.values
y = le.transform(response)



Train/Test Split

It is best practice in machine learning to evaluate models on a test set of data. Since this is
covered substantially in other literature, we will not go into the details of why here. sklearn
comes with several utilities to split data, but we will explore the simplest one.

from sklearn.model_selection import train_test_split 
 
X_train, X_test, y_train, y_test = \ 
    train_test_split(X, y, test_size=0.33, random_state=42)

train_test_split returns a tuple of our features/response split into training and test sets.
The random_state argument shows up in a lot of places in sklearn. Generally, when there is
a stochastic component to the sklearn component you are using, random_state is there to
allow you to set a seed so that your work can be replicated.
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Fitting our classifier

Our data is in a numerical format, its been split, and now we are ready to do some Machine
Learning.

Don't forget, when fitting any supervised learning technique, you must specify both your
featureset and your response in the fit method.
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0.85

Trying another classifier

Remember the sklearn API was designed to make using different algorithms as consistent as
possible. This means the same code should require minimal changes when applied to another
classifier.
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from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = \
    train_test_split(X, y, test_size=0.33, random_state=42)

model = KNeighborsClassifier()
model.fit(X_train, y_train)
model.score(X_test,y_test)

from sklearn.ensemble import RandomForestClassifier, GradientBoostingClas
from xgboost import XGBClassifier
from sklearn.linear_model import LogisticRegression, RidgeClassifier



RandomForestClassifier holdout accuracy: 0.8 
GradientBoostingClassifier holdout accuracy: 0.8 
XGBClassifier holdout accuracy: 0.85 
LogisticRegression holdout accuracy: 0.8 
RidgeClassifier holdout accuracy: 0.6 
KNeighborsClassifier holdout accuracy: 0.85 

Cross-validation

sklearn provides a cross_val_score to test the accuracy of an estimator across
multiple folds painting a truer picture of an estimators' efficacy than a simple train/test
split.
With cross_val_score, we don't really need to provide separate train and test sets.
Though, with enough data, it is sometimes instructive to have train/test and holdout
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0.8333333333333334

Improving model accuracy with GridSearchCV

With GridSearchCV, we can feed a hyperparameter grid into our estimator to determine an
'optimal' set of hyperparameters to use for our particular business problem. GridSearchCV
itself is an estimator and so it has the usual 'fit() and predict() methods any other
classifier would.

At a minimum, parameterizing the GridSearchCV estimator we need to specify: 1. The
estimator we want to use 2. The hyperparameter searchspace as a dictionary

Optionally, we can also specify: 1. The number of folds to use
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for model in [RandomForestClassifier(n_estimators=10),
              GradientBoostingClassifier(),
              XGBClassifier(),
              LogisticRegression(solver='lbfgs', multi_class='auto'),
              RidgeClassifier(),
              KNeighborsClassifier()]:
    model.fit(X_train, y_train)
    print(f'{model.__class__.__name__} holdout accuracy:',
          model.score(X_test,y_test))

from sklearn.model_selection import cross_val_score
import numpy as np

knn = KNeighborsClassifier()
np.mean(cross_val_score(knn, X, y, cv=5))

from sklearn.model_selection import GridSearchCV



Best Score: 0.8666666666666667 

KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', 
           metric_params=None, n_jobs=None, n_neighbors=3, p=3, 
           weights='uniform')

Holding p=3 constant, a visual inspection of the cross-validated scores shows support for 
n_neighbors=3
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/usr/local/lib/python3.6/dist-packages/seaborn/categorical.py:1428: 
FutureWarning: remove_na is deprecated and is a private function. Do not 
use. 
  stat_data = remove_na(group_data) 

Confusion Matrix

param_grid=dict(n_neighbors=[1,3,5,7,9,11], p=[1,2,3,4,5,6])
grid = GridSearchCV(knn, param_grid, cv=5)
grid.fit(X, y)
print(f'Best Score: {grid.best_score_}')
grid.best_estimator_

import seaborn as sns
sns.set_style('whitegrid')
p_3 = grid.cv_results_['param_p']==3
g = sns.pointplot(x=grid.cv_results_['param_n_neighbors'][p_3],
                  y=grid.cv_results_['mean_test_score'][p_3]) \
       .set(xlabel='n_neighbors', ylabel='Accuracy', title='Gridsearch Re



It looks like our classifier struggles more to distinguish between private passenger auto and
workers' compensation.

[12]

medmal ppauto wkcomp

medmal 19 1 0

ppauto 0 17 3

wkcomp 0 3 17

Visual representation of the data

By inspection (at least across the first three development ages), it is more difficult to
distinguish between wkcomp and ppauto in line with where our classifiers are least accurate.
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from sklearn.metrics import confusion_matrix
pd.DataFrame(confusion_matrix(y, grid.best_estimator_.predict(X)),
             index=le.classes_, columns=le.classes_)

plot_data=ldf.reset_index().iloc[:,1:].set_index('LOB').T

g = sns.pairplot(ldf.reset_index()[['LOB','1-2','2-3','3-4']], hue="LOB")



More complex workflows with Pipeline

The authors of sklearn recognize that composability of multiple estimators will be necessary
to build the best models. For example, you may want to cluster a feature before feeding it into
a Regressor.

The Pipeline is useful for chaining one or more transformers together. Pipelines themselves
are estimators and have fit(), predict(), and score() function and can be used with all of
the sklearn funcitons used for regular estimators including but not limited to: 
cross_val_score, confusion_martix

Adding a PCA step with no hyper-parameter tuning actually reduces our cross validation
accuracy score.

[14] from sklearn.pipeline import Pipeline
from sklearn.decomposition import PCA

steps=[('pca', PCA()),
       ('knn',KNeighborsClassifier(n_neighbors=3, p=3))]

pipe = Pipeline(steps=steps)
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Can we do better with parameter tuning?

Pipelines and GridSearchCV

Since a Pipeline is just another estimator GridSearchCV allows the hyperparameter space
of all estimators in the pipeline to be gridsearched in one go.

To avoid hyperparameter name clashes between one estimator and another within a pipeline, 
sklearn uses a double underscore naming convention of the form
{estimator_name}__{hyperparameter} for the keys of its parameter grid.

We achieve parity with the highest accuracy of our original classifier. In this instance, adding
the Principle Components step did not yield any better results.
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Best Score: 0.8666666666666667 

Pipeline(memory=None, 
     steps=[('pca', PCA(copy=True, iterated_power='auto', n_components=5, 
random_state=None, 
  svd_solver='auto', tol=0.0, whiten=False)), ('knn', 
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', 
           metric_params=None, n_jobs=None, n_neighbors=3, p=6, 
           weights='uniform'))])

Scikit-Learn Recap

np.mean(cross_val_score(pipe, X, y,cv=5))

param_grid=dict(knn__n_neighbors=[1,3,5,7,9,11],
                knn__p=[1,2,3,4,5,6],
                pca__n_components=[3, 5, 7, 9])

pipe = Pipeline(steps=[('pca', PCA()),
                       ('knn',KNeighborsClassifier())])

grid = GridSearchCV(pipe, param_grid, cv=5, refit=True)
grid.fit(X, y)

print(f'Best Score: {grid.best_score_}')
grid.best_estimator_



Almost everything is an Estimator. They all have a fit method and depending on the
nature of the estimator may also have a predict, score or transform method.
The API is standardized across estimator
A transformer is a special type of estimator that trasnforms data for another Estimator
Cross-validation with Grid Search helps in hyperparameter selection
Pipelines are useful for composing a chain of Estimators.
The documentation is a goldmine of information
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