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OVERVIEWOVERVIEW

Where did this talk come from?
Categorical vs continuous data
Naive Bayes
Decision trees
Multiple Correspondance Analysis
Let’s model!



ORIGINSORIGINS



ORIGINSORIGINS

Two years ago, I gave a  about APIs
As an afterthought, I tried to fit a model
The fits were challenging because the data was largely categorical.

talk

https://github.com/PirateGrunt/ape4apis


THE DATATHE DATA





BEFORE ANYONE GETS CARRIED AWAY…BEFORE ANYONE GETS CARRIED AWAY…

From nflarrests.com:

Also: arrest != conviction

Keep in mind there are 1700 NFL Players and their
arrest rates are lower than the USA arrest rate.



WHAT I TRIED TO MEASUREWHAT I TRIED TO MEASURE

I tried to measure whether a player would get a second arrest.

Rate of 1st arrest requires player statistics for each season, which means a
second source.
I’m lazy. Let’s check rate of second arrest.



JUST THE BASIC FACTSJUST THE BASIC FACTS

Number of players who’ve been arrested: 673
Number of players w/more than one arrest: 146
Probability of second arrest: 21.7%

So there is a small probability of having more than one arrest. Compare this to
Bailey/Simon probability of second accident.



CATEGORICAL VS CONTINUOUS DATACATEGORICAL VS CONTINUOUS DATA



THERE ARE ONLY 2 KINDS OF DATATHERE ARE ONLY 2 KINDS OF DATA

Continuous
Categorical

Ordinal
Unordered

OK, three would be a mixed distribution (zero-inflated, etc.)

Outcomes (for supervised learning) are either categorical or continuous
(classification or regression).



CATEGORICAL DATACATEGORICAL DATA

Gender
Smoking
Safe driver program
Drug testing policy
…

Basically anything to which you could apply a schedule mod. And also:

Class code
Territory
Zip code

And those are just the ones that might be in a rating manual.



CONTINUOUS OUTCOMECONTINUOUS OUTCOME

sims <- 1e3 

tbl_linear <- tibble( 

    x = runif(sims, 0, 

  , e = rnorm(sims, sd 

) %>%  

  mutate( 

    y = 1.5 + 2 * x + e

  )



CATEGORICAL OUTCOMECATEGORICAL OUTCOME

Logistic regression
Support vector machine
Tree methods



CATEGORICAL OUTCOMECATEGORICAL OUTCOME

tbl_logistic <- tbl_lin

  mutate( 

      e = rlogis(1e3) 

    , latent = -7.5 + 2

    , y = as.integer(la

  )



CATEGORICAL PREDICTORS IN A LINEAR MODELCATEGORICAL PREDICTORS IN A LINEAR MODEL

set.seed(1234) 

tbl_one_cat <- function(cat_label = 'a', sims = 1e3) { 

  slope <- rnorm(1, 2, 2) 

  intercept <- rnorm(1, 0, 10) 

  tibble( 

    x = runif(sims, 0, 10) 

  , e = rnorm(sims, sd = 5) 

  , category = rep(cat_label, sims) 

) %>%  

  mutate( 

    y = intercept + slope * x + e 

  ) 

} 

 

tbl_cat <- map_dfr(letters[1:5], tbl_one_cat)



DIFFERENT INTERCEPTSDIFFERENT INTERCEPTS





DIFFERENT SLOPESDIFFERENT SLOPES





OR BOTHOR BOTH





ISSUESISSUES

Grouped data is looped data
Handle this with credibility/hierarchical models
What if we only have categorical predictors?



THE DESIGN MATRIXTHE DESIGN MATRIX
categorya categoryb categoryc categoryd categorye categorya:x categoryb:x

1 0 0 0 0 8.6091538 0

1 0 0 0 0 6.4031061 0

1 0 0 0 0 0.0949576 0

1 0 0 0 0 2.3255051 0

1 0 0 0 0 6.6608376 0

1 0 0 0 0 5.1425114 0

1 0 0 0 0 6.9359129 0

1 0 0 0 0 5.4497484 0

1 0 0 0 0 2.8273358 0

1 0 0 0 0 9.2343348 0



Let’s try some non-linear methods



NAIVE BAYESNAIVE BAYES



BAYESBAYES

Pr(Y = y|X = x) =
Pr(Y = y) ∗ Pr(X = x|Y = y)

Pr(X = x)



FITFIT

library(naivebayes) 

 

fit_nb <- naive_bayes( 

    formula = MultiArrest ~ PositionType 

  , data = tbl_players 

)

## ================================ Naive Bayes =================================  

## Call:  

## naive_bayes.formula(formula = MultiArrest ~ PositionType, data = tbl_players) 

##  

## A priori probabilities:  

##  

##     FALSE      TRUE  

## 0.7830609 0.2169391  

##  

## Tables:  

##              

## PositionType       FALSE        TRUE 

##            D 0.529411765 0.541095890 

##            O 0.462998102 0.424657534 

##            S 0.007590133 0.034246575



CAN WE WORK THAT OUT MANUALLY?CAN WE WORK THAT OUT MANUALLY?

prior_y <- sum(tbl_players$MultiArrest) / nrow(tbl_players) 

prob_x <- sum(tbl_players$PositionType == 'D') / nrow(tbl_players) 

tbl_cond <- tbl_players %>% filter(MultiArrest) 

prob_x_cond <- sum(tbl_cond$PositionType == 'D') / nrow(tbl_cond) 

prior_y * prob_x_cond / prob_x 

## [1] 0.2206704 

predict(fit_nb, type = 'prob')[1, 'TRUE'] 

##      TRUE  

## 0.2206704 

 

prior_y 

## [1] 0.2169391



TWO CATEGORIESTWO CATEGORIES

One:

Two:

Pr(Y = y|X = x) =
Pr(Y = y) ∗ Pr(X = x|Y = y)

Pr(X = x)

Pr(Y = y|X = x, Z = z)

=
Pr(Y = y) ∗ Pr(X = x|Y = y) ∗ Pr(Z = z|Y = y)

Pr(X = x) ∗ Pr(Z = z)



HOW ABOUT A LOT OF CATEGORIES?HOW ABOUT A LOT OF CATEGORIES?

fit_nb <- naive_bayes( 

    formula = MultiArrest ~ TeamAbbr + Conference + Division + Position  

        + PositionType + Encounter + CrimeCategory + ArrestSeasonState  

    + DayOfWeek 

  , data = tbl_players 

)



HOW DO OUR PLAYERS LOOK?HOW DO OUR PLAYERS LOOK?





NAIVE BAYESNAIVE BAYES

Often used in text processing
Great for a sparse matrix
It is ‘naive’ because we assume independence between categories



A DECISION TREEA DECISION TREE



CHARACTERISTICS OF A DECISION TREECHARACTERISTICS OF A DECISION TREE

Divides a sample into regions/subsets
The ‘prediction’ is a function (usually the mean) of some value within each
category
Membership is assessed by computing some measure of fit. If a split
improves the criteria, then it is made.
Forward only, ‘greedy’
Number of levels and other criteria control the size and shape of the tree



MEASURES OF FITMEASURES OF FIT

For regression:

Construct regions which minimize residual sum of squares

For classification:

Construct regions which maximize homogeneity



LINEAR FITLINEAR FIT

library(tree) 

fit_tree <- tree::tree(formula = y ~ x, data = tbl_linear) 

summary(fit_tree) 

##  

## Regression tree: 

## tree::tree(formula = y ~ x, data = tbl_linear) 

## Number of terminal nodes:  5  

## Residual mean deviance:  24.45 = 24330 / 995  

## Distribution of residuals: 

##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  

## -15.8400  -3.2980   0.2187   0.0000   3.1030  18.4500





CATEGORICAL FITCATEGORICAL FIT
a b output

red black 1

red white 1

red black 0

blue white 0

blue black 0



TWO MEASURES OF HOMOGENEITYTWO MEASURES OF HOMOGENEITY

Gini = ∑ p ∗ (1 − p)

Entropy = −∑ p ∗ log(p)



MEASURE TOTAL ENTROPYMEASURE TOTAL ENTROPY

entropy <- function(y) { 

  tbl <- tibble(y) %>%  

    group_by(y) %>%  

    summarise(prob = n()) %>%  

    mutate( 

        prob = prob / sum(prob) 

      , ent = -prob * log(prob)) 

   

  tbl$ent %>% sum() 

}



MEASURE ENTROPY POST-SPLITMEASURE ENTROPY POST-SPLIT

entropy_post <- function(tbl, out_col, split_col) { 

   

  split_col <- enquo(split_col) 

  out_col <- enquo(out_col) 

   

  tbl %>%  

    group_by(!! split_col) %>%  

    summarise( 

        ent = entropy(!! out_col) 

      , group_pct = n() / nrow(tbl) 

    ) %>% 

    ungroup() %>% 

    summarise( 

      ent_post = sum(ent * group_pct) 

    ) %>% 

    pull(ent_post) 

}



a b output

red black 1

red white 1

red black 0

blue white 0

blue black 0

WHICH COLUMN WORKS BETTER ON OUR TOY DATA?WHICH COLUMN WORKS BETTER ON OUR TOY DATA?

entropy(tbl_toy$output

## [1] 0.6730117 

 

tbl_toy %>%  

  entropy_post(output, 

## [1] 0.3819085 

 

tbl_toy %>%  

  entropy_post(output, 

## [1] 0.6591674



POTENTIAL NODE SPLITSPOTENTIAL NODE SPLITS

entropy(tbl_players$MultiArrestNum) 

## [1] 0.5230065 

tbl_players %>%  

  entropy_post(MultiArrestNum, PositionType) 

## [1] 0.5190857 

 

tbl_players %>%  

  entropy_post(MultiArrestNum, Season) 

## [1] 0.4943877 

 

tbl_players %>%  

  entropy_post(MultiArrestNum, ArrestSeasonState) 

## [1] 0.5218782



WHAT SPLITS?WHAT SPLITS?

library(rpart) 

 

fit_tree <- tree( 

    data = tbl_players 

  , formula = MultiArrestFactor ~ PositionType + Season + ArrestSeasonState) 

 

summary(fit_tree) 

##  

## Classification tree: 

## tree(formula = MultiArrestFactor ~ PositionType + Season + ArrestSeasonState,  

##     data = tbl_players) 

## Variables actually used in tree construction: 

## [1] "Season"       "PositionType" 

## Number of terminal nodes:  4  

## Residual mean deviance:  0.9865 = 659.9 / 669  

## Misclassification error rate: 0.2125 = 143 / 673



PLOT THE TREEPLOT THE TREE

plot(fit_tree) 

text(fit_tree, pretty = 0)





NOTENOTE

1. Full disclosure: I used both rpart and tree for the fit. For reasons that
I’ve not yet debugged, rpart gave me no nodes.

2. A package’s insistence on using factors may cause you to lose your mind.



BAGGING/RANDOM FORESTSBAGGING/RANDOM FORESTS

Avoid overfit by bootstrapping
Fit hundreds of resampled trees
Take the average of results
We don’t get that sweet tree plot



RANDOM FORESTRANDOM FOREST

library(randomForest) 

fit_forest <- randomForest( 

    formula = MultiArrestFactor ~ PositionType + Season + ArrestSeasonState 

  , data = tbl_players 

)



VARIABLE IMPORTANCEVARIABLE IMPORTANCE

varImpPlot(fit_forest)



MULTIPLE CORRESPONDENCE ANALYSISMULTIPLE CORRESPONDENCE ANALYSIS



WHAT IS MCA?WHAT IS MCA?

PCA, but for categories
CA, but for multiple
variables



WHY MCA?WHY MCA?

Dimensionality reduction
Could also consider (hierarchical) cluster analysis
Others?



HOW DOES IT WORK?HOW DOES IT WORK?

Candidly, I can’t easily explain it.
Creates a “complete disjunctive table”, i.e. a “one hot encoding” table
This creates points in a high-dimensional space
Synthesizes new dimensions which capture the most variance between the
points



COMPLETE DISJUNCTIVE TABLECOMPLETE DISJUNCTIVE TABLE
id metro region

1 urban north

2 urban south

3 rural east

4 urban north



CDT, OR “ONE-HOT ENCODING”CDT, OR “ONE-HOT ENCODING”

id metro_rural metro_urban region_east region_north region_south

1 0 1 0 1 0

2 0 1 0 0 1

3 1 0 1 0 0

4 0 1 0 1 0

tbl_toy_mca_one_hot <- tbl_toy_mca %>% 

  gather(category, value, -id) %>% 

  unite(cdt, -id) %>% 

  mutate(count = 1L) %>% 

  tidyr::spread(cdt, count, fill = 0L) 

 

tbl_toy_mca_one_hot %>% knitr::kable()



EXTRACT DATA FOR PROCESSINGEXTRACT DATA FOR PROCESSING

tbl_cats <- tbl_players %>%  

  ungroup() %>%  

  select( 

      CrimeCategory, ArrestSeasonState, Conference 

    , Division, DayOfWeek, Outcome, Position, PositionType 

    , Season) %>%  

  mutate_if(is.character, as.factor) 

 

library(FactoMineR) 

fit_mca <- MCA(tbl_cats, graph = FALSE)



VISUALIZE IN THE REDUCED DIMENSIONSVISUALIZE IN THE REDUCED DIMENSIONS





MCA: CATEGORICAL -> CONTINUOUSMCA: CATEGORICAL -> CONTINUOUS

Call: glm(formula = MultiArrestNum ~ 0 + dim_1 + dim_2, family =
binomial(), data = tbl_players)

Deviance Residuals: Min 1Q Median 3Q Max 
-1.874 -1.180 -1.159 -1.134 1.233

Coefficients: Estimate Std. Error z value Pr(>|z|) 
dim_1 0.29050 0.16491 1.762 0.0781 . dim_2 0.05891 0.13700 0.430 0.6672 
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1

(Dispersion parameter for binomial family taken to be 1)

Residual deviance: 928.92 on 671 degrees of freedom AIC: 932.92

Number of Fisher Scoring iterations: 3

Null deviance: 932.98  on 673  degrees of freedom



LET’S MODEL!LET’S MODEL!



HOW WE’LL MODELHOW WE’LL MODEL

1. Pick a performance
measure

2. Setup cross-validation
3. Train some models
4. Measure performance



OUR PERFORMANCE MEASUREOUR PERFORMANCE MEASURE

Misclassification rate

Other options:

True positive rate
False positive rate
Other confusion matrix metrics
Area under the curve (AUC): A number close to 1 is
good



MEASURESMEASURES

misclass <- function(tbl_test, fit_obj) { 

  tbl_test <- tbl_test %>%  

    mutate( 

        pred = predict(fit_obj, type = 'class', newdata = tbl_test) 

      , misclass = pred != MultiArrestFactor 

    ) 

  sum(tbl_test$misclass) / nrow(tbl_test) 

}



N-FOLD CROSS VALIDATIONN-FOLD CROSS VALIDATION

library(modelr) 

set.seed(1234) 

tbl_folds <- crossv_kfold(tbl_players, k = 10)



TBL_FOLDSTBL_FOLDS

tbl_folds %>% head() 

## # A tibble: 6 x 3 

##   train          test           .id   

##   <list>         <list>         <chr> 

## 1 <S3: resample> <S3: resample> 01    

## 2 <S3: resample> <S3: resample> 02    

## 3 <S3: resample> <S3: resample> 03    

## 4 <S3: resample> <S3: resample> 04    

## 5 <S3: resample> <S3: resample> 05    

## 6 <S3: resample> <S3: resample> 06



WHAT’S IN TBL_FOLDS?WHAT’S IN TBL_FOLDS?

Each row in the tibble holds:
a training resample object
a test resample object
an id

A resample object is a list which contains a data frame and a vector of row
indices.

tbl_folds$train[[1]] %>% class() 

## [1] "resample"



ASSESS ONE FOLDASSESS ONE FOLD

assess_fold <- function(obj_train, obj_test, method, the_formula) { 

  tbl_train <- obj_train %>% as.data.frame() 

  tbl_test <- obj_test %>% as.data.frame() 

   

  fit <- do.call( 

      method 

    , args = list(formula = the_formula, data = tbl_train)) 

   

  misclass(tbl_test, fit) 

 

} 

 

one_fold_misclass <- assess_fold( 

    tbl_folds$train[[1]] 

  , tbl_folds$test[[1]] 

  , tree::tree 

  , as.formula('MultiArrestFactor ~ PositionType + Season'))



ASSESS ALL FOLDSASSESS ALL FOLDS

cross_validate <- function(formula, tbl_folds, method) { 

  map2_dbl( 

    tbl_folds$train 

  , tbl_folds$test 

  , assess_fold 

  , method 

  , formula 

  ) %>% mean() 

} 

 

misclasses <- cross_validate( 

    as.formula('MultiArrestFactor ~ PositionType + Season') 

  , tbl_folds 

  , tree::tree 

) 

 

misclasses <- cross_validate( 

    as.formula('MultiArrestFactor ~ PositionType + Season') 

  , tbl_folds 

  , naive_bayes 

) 

## Error in which((sapply(newdata[ind_factor], nlevels) != sapply(tables[ind_factor]



MAKE FORMULASMAKE FORMULAS

make_formula <- function(predictors, target, intercept = TRUE) { 

  str_predictors <- paste(predictors, collapse = '+') 

  if (intercept) { 

    str_formula <- paste(target, '~ 1 + ') 

  } else { 

    str_formula <- paste(target, '~') 

  } 

   

  str_formula <- paste(str_formula, str_predictors) 

  as.formula(str_formula) 

}



A FEW FORMULASA FEW FORMULAS

the_formulas <- list( 

      c('PositionType', 'Season') 

    , c('PositionType', 'Season', 'DayOfWeek') 

    , c('PositionType', 'Season', 'DayOfWeek') 

    , c('PositionType', 'Season', 'DayOfWeek', 'Conference') 

    , c('PositionType', 'Season', 'DayOfWeek', 'Conference', 'Division') 

    , c('PositionType', 'Season', 'DayOfWeek', 'Conference', 'Division', 'TeamCity')

  ) %>%  

  map(make_formula, 'MultiArrestFactor', intercept = FALSE) %>%  

  as.vector() 

 

tbl_models <- tibble( 

  formula = the_formulas 

)



OUR MODELS TIBBLEOUR MODELS TIBBLE
formula

MultiArrestFactor ~ PositionType + Season

MultiArrestFactor ~ PositionType + Season + DayOfWeek

MultiArrestFactor ~ PositionType + Season + DayOfWeek

MultiArrestFactor ~ PositionType + Season + DayOfWeek + Conference

MultiArrestFactor ~ PositionType + Season + DayOfWeek + Conference +
Division

MultiArrestFactor ~ PositionType + Season + DayOfWeek + Conference +
Division + TeamCity



ASSESS ALL FOLDS, ALL FORMULAS, ALL MODELSASSESS ALL FOLDS, ALL FORMULAS, ALL MODELS

tbl_models <- tbl_models %>% 

  mutate( 

      misclass_tree = map_dbl(formula, cross_validate, tbl_folds, tree::tree) 

    , misclass_nb = map_dbl(formula, cross_validate, tbl_folds, naive_bayes) 

  ) 

## Error in which((sapply(newdata[ind_factor], nlevels) != sapply(tables[ind_factor]



formula

MultiArrestFactor ~ PositionType + Season

MultiArrestFactor ~ PositionType + Season + DayOfWeek

MultiArrestFactor ~ PositionType + Season + DayOfWeek

MultiArrestFactor ~ PositionType + Season + DayOfWeek + Conference

MultiArrestFactor ~ PositionType + Season + DayOfWeek + Conference +
Division

MultiArrestFactor ~ PositionType + Season + DayOfWeek + Conference +
Division + TeamCity



CONCLUSIONCONCLUSION



WHAT DID WE LEARN CHARLIE BROWN?WHAT DID WE LEARN CHARLIE BROWN?

Categorical data is ubiquitous, but tricky to model
Non-linear approaches like tree-based methods and Naive Bayes look at
categorical differently
MCA can address “curse of dimensionality” with categorical data
Let’s all keep doing this! Fitting categorical data is hard. Research is light.



Slides may be found here:

All of the code - even stuff you didn’t see - is on GitHub

http://pirategrunt.com/sparsity_blues/#/

https://github.com/pirategrunt

http://pirategrunt.com/sparsity_blues/#/
https://github.com/pirategrunt


THANK YOU!THANK YOU!



Q&AQ&A
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