
THE DATA PART OF BIG DATA: CURRENT
TOPICS IN DATA PRE-PROCESSING FOR

PREDICTIVE MODELING
CAS 2019 RPM Seminar

Louise Francis, FCAS, CSPA,
MAAA

AGENDA

Data Preprocessing for Predictive Modeling
The tidy universe: tidyverse packages

 The data sets we are using
 Read data into R
 Reshape data
 SQL like data munging
 Tools for Text data

Feature Engineering Topics

Please note that we plan for this to be an interactive session geared towards
audience interest and participation. 2

CRISP DM

o Describes life cycle for data mining

See:
https://www.ibm.com/support/knowledgecenter/en/SS3RA7_15.0
.0/com.ibm.spss.crispdm.help/crisp_overview.htm

oHas six phases with feedback loop

6 PHASES OF CRISP DM
1. Business understanding

2. Data Understanding

3. Data Preprocessing

4. Modeling

5. Evaluation

6. Deployment

HADLEY WICKHAM

Hadley Wickham: http://hadley.nz/
Well known R programmer of R libraries

Chief scientist at Rstudio

One of his first packages was reshape
package for aggregating and
organizing data

HADLEY WICKHAM
 Developed ggplot2 package

 Developed dplyr package

 Books include R for Data Science and ggplot2

 Proposed tidy data framework

Described in paper “Tidy Data” in Journal of Statistical Software

DATA CLEANING AND TIDY DATA
 Data cleaning and preparing is the most time consuming part of most

analytics projects: the rule of thumb is that it consumes 80% of the time

 Wickham notes that there has been little research into how to clean data
well

 Tidy data addresses a key aspect of data cleaning: organizing the data
we receive into a structure that can be used for analysis

TIDY DATA PRINCIPLES
 Provides principles on how to organize data

 To make data cleaning easier

 Which led to tools to make the process easier and more efficient

WICKHAM’S DEFINITIONS
 A data set is a collection of values

 quantitively

 qualitative

 A variable contains all values that measure the same attribute (such as
paid losses)

 An observation contains all values measured on the same unit (such as
accident year)

MULTIPLE WAYS TO ORGANIZE DATA

 Two views of data
 Database form

 Spread out form – columns names could represent data

 Both can be tidy depending on the application

SPREAD OUT INTO COLUMNS

A common way actuaries organize data
Loss development example

Rows are accident year

Columns are development age

Values (paid or incurred) are recorded under development age

TRIANGLE DATA

The spread out form
Cumulative Paid Losses

Accident Months of Development

 Year 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216

1974 $267 $1,975 $4,587 $7,375 $10,661 $15,232 $17,888 $18,541 $18,937 $19,130 $19,189 $19,209 $19,234 $19,234 $19,246 $19,246 $19,246 $19,246

1975 310 2,809 5,686 9,386 14,884 20,654 22,017 22,529 22,772 22,821 23,042 23,060 23,127 23,127 23,127 23,127 23,159

1976 370 2,744 7,281 13,287 19,773 23,888 25,174 25,819 26,049 26,180 26,268 26,364 26,371 26,379 26,397 26,397
1977 577 3,877 9,612 16,962 23,764 26,712 28,393 29,656 29,839 29,944 29,997 29,999 29,999 30,049 30,049

1978 509 4,518 12,067 21,218 27,194 29,617 30,854 31,240 31,598 31,889 32,002 31,947 31,965 31,986

1979 630 5,763 16,372 24,105 29,091 32,531 33,878 34,185 34,290 34,420 34,479 34,498 34,524

1980 1,078 8,066 17,518 26,091 31,807 33,883 34,820 35,482 35,607 35,937 35,957 35,962

1981 1,646 9,378 18,034 26,652 31,253 33,376 34,287 34,985 35,122 35,161 35,172

1982 1,754 11,256 20,624 27,857 31,360 33,331 34,061 34,227 34,317 34,378

1983 1,997 10,628 21,015 29,014 33,788 36,329 37,446 37,571 37,681

1984 2,164 11,538 21,549 29,167 34,440 36,528 36,950 37,099

1985 1,922 10,939 21,357 28,488 32,982 35,330 36,059
1986 1,962 13,053 27,869 38,560 44,461 45,988

1987 2,329 18,086 38,099 51,953 58,029

1988 3,343 239,383 52,054 66,203

1989 3,847 34,171 59,232

1990 6,090 33,392

1991 5,451

TRIANGLE DATA -SNAPSHOT

Accident Months of Development
 Year 12 24 36 48 60

1974 $267 $1,975 $4,587 $7,375 $10,661

1975 310 2,809 5,686 9,386 14,884
1976 370 2,744 7,281 13,287 19,773

1977 577 3,877 9,612 16,962 23,764

1978 509 4,518 12,067 21,218 27,194
1979 630 5,763 16,372 24,105 29,091

Values spread across development month

LONG DATABASE FORMAT

All paid values in one column, one variable
Year Development Age (Years) Cumulative paid

1974 1 267

1975 1 310

1976 1 370

1977 1 577

1978 1 509

1979 1 630

1980 1 1,078

1981 1 1,646

1982 1 1,754

1983 1 1,997

1984 1 2,164

1985 1 1,922

1986 1 1,962

NON-TRIANGULAR FORM
Loss reserving data can be in non-triangle form

 One year, one development age on each row

 One value such as incurred or paid on each row

 For modeling applications, one might want multiple values (incurred,
paid, closing rates) in one row

CLAIM DATA
WC Claim dataset

From Crowd Analytics competition

Obs_ID Dependent

Average

Weekly

Wage Body Part

Body Part

Code Cause

Cause

Code

Claimant

Age

Claimant

Gender

Claimant

Gender

Code

Claimant Hire

Date

Claimant

Marital

Status

Obs_1 98679 500 Pelvis 46

Struck or

Injured By 1700 21 Female F 4/3/2001

Obs_2 55727 1,037.00

Low Back

Area 42

Strain or

Injury By 1500 Male M 5/15/2001

Obs_3 185833 929

Low Back

Area 42

Strain or

Injury By 1500 63 Male M 5/15/2001 Married

Obs_4 98615 1,226.00

Multiple

Body

Parts 90

Strain or

Injury By 1500 49 Male M

Obs_5 51396

Other

Facial

Soft

Tissue 18

Miscellaneo

us Causes 1900 51 Male M

WICKHAM’S DEFINITION OF TIDY DATA

 Each variable has its own column

 Each observation has its own row

 Each value has its own cell

TYPES OF MESSINESS
 Multiple observations are in a row spread out over columns

 Column headers contain values

 One observation is in multiple rows

 One column contains two or more variables

TIDY DATA RELATED TOOLS

 readr library

 read_csv
 Reads data in as a tibble

Similar to a data frame

Note that tibbles can deal with column variables that are numbers
(such as development age)

 tidyr library

TIDYR FUNCTIONS
tidyr library can be used to reorganize data and make it tidy

 gather

 spread

 separate

When two variables are stored as a string in one column

 unite

NOW USE READR LIBRARY
 Load readr package and set filename

library(readr)

myCSVfile<-"C:/CLRS/AutoPDVariables.csv“

 Read in data

paidtri<-read_csv(file=myCSVfile)

 Print names and some records

names(paidtri)

head(paidtri)

NOW GATHER THE TRIANGLE DATA
 Apply tidyr::gather function, specify new variable to be Devage

paidData<-gather(data=paidtri,'1':'18',key="Devage",value="paid")

 Print out top rows

head(paidData)

TIDYVERSE
Set of related libraries that
Read data efficiently (readr)
Create tibble data (tibble)
Tidy the data through reorganization (tidyr)
Perform database management functions (diplyr)
Perform string functions stringr()
Perform EDA (ggplot2)
Use code:

>library(tidyverse)
Make sure you have installed tidyverse

MORE ON READR: SPACES IN VARIABLE NAMES

[1] "Obs_ID" "Dependent"
 [3] "Average Weekly Wage" "Body Part"
 [5] "Body Part Code" "Cause"
 [7] "Cause Code" "Claimant Age"
 [9] "Claimant Atty Firm Name" "Claimant Gender"
[11] "Claimant Gender Code" "Claimant Hire Date"
[13] "Claimant Marital Status" "Claimant Marital Status Code"
[15] "Claimant State" "Claimant State Code"
[17] "Department Code" "Detail Cause"
[19] "Detail Cause Code" "Domestic vs. Foreign?"
[21] "Domestic vs. Foreign? Code" "Dt Reported to Carrier/TPA"
[23] "Dt Reported to Employer" "Employment Status"
[25] "Employment Status Code" "Date of Injury/Illness"
[27] "Handling Office Name" "How Injury Occurred"
[29] "Injury/Illness City" "Injury/Illness Postal"
[31] "Injury/Illness State" "Injury/Illness State Code"
[33] "Jurisdiction" "Jurisdiction Code"
[35] "Lost Time or Medical Only?" "Lost Time or Medical Only? Code"
[37] "Nature of Injury/Illness" "Nature of Injury/Illness Code"
[39] "Number of Dependents" "OSHA Injury Type"
[41] "OSHA Injury Type Code" "Severity Index Code"
[43] "Severity Index Code Code" "Time of Injury/Illness"
[45] "Type of Loss" "Type of Loss Code"
[47] "Policy Year" "Reforms_dummy"

MAKE.NAMES

oThe make.names function can be used to eliminate the spaces

oThis makes the variables easier to work with in R

myfile="D:/RPM Data/CompClaimsTrain.csv“

wcdata<-read_csv(myfile)

names(wcdata)

names(wcdata)=make.names(names(wcdata),unique=TRUE)

VARIABLE NAMES – SPACES REPLACED
1] "Obs_ID" "Dependent"
 [3] "Average.Weekly.Wage" "Body.Part"
 [5] "Body.Part.Code" "Cause"
 [7] "Cause.Code" "Claimant.Age"
 [9] "Claimant.Atty.Firm.Name" "Claimant.Gender"
[11] "Claimant.Gender.Code" "Claimant.Hire.Date"
[13] "Claimant.Marital.Status" "Claimant.Marital.Status.Code"
[15] "Claimant.State" "Claimant.State.Code"
[17] "Department.Code" "Detail.Cause"
[19] "Detail.Cause.Code" "Domestic.vs..Foreign."
[21] "Domestic.vs..Foreign..Code" "Dt.Reported.to.Carrier.TPA"
[23] "Dt.Reported.to.Employer" "Employment.Status"
[25] "Employment.Status.Code" "Date.of.Injury.Illness"
[27] "Handling.Office.Name" "How.Injury.Occurred"
[29] "Injury.Illness.City" "Injury.Illness.Postal"
[31] "Injury.Illness.State" "Injury.Illness.State.Code"
[33] "Jurisdiction" "Jurisdiction.Code"
[35] "Lost.Time.or.Medical.Only." "Lost.Time.or.Medical.Only..Code"
[37] "Nature.of.Injury.Illness" "Nature.of.Injury.Illness.Code"
[39] "Number.of.Dependents" "OSHA.Injury.Type"
[41] "OSHA.Injury.Type.Code" "Severity.Index.Code"
[43] "Severity.Index.Code.Code" "Time.of.Injury.Illness"
[45] "Type.of.Loss" "Type.of.Loss.Code"
[47] "Policy.Year" "Reforms_dummy"

PARSING VARIABLES

oWhen the data was read in the wrong data type was assigned to some
variables
oDate variables read in as character

oUse one of readr’s parsing functions to transform to correct data type
oparse_date(), parse_number(),parse_factor(), parse_logical()

oRequire a string vector

oExample:

owcdata$Dt.Reported.to.Carrier.TPA=parse_date(wcdata$Dt.Reported.t
o.Carrier.TPA,"%m/%d/%Y")

GET BASIC DESCRIPTIVE STATISTICS: SUMMARY()

oUse summary function

osummary(wcdata)

Obs_ID Dependent Average.Weekly.Wage Body.Part
 Length:15407 Min. : 0 Min. : 2 Length:15407
 Class :character 1st Qu.: 152 1st Qu.: 500 Class :character
 Mode :character Median : 446 Median :1000 Mode :character
 Mean : 10285 Mean :1148
 3rd Qu.: 1704 3rd Qu.:1529
 Max. :3774290 Max. :9999
 NA's :9535

GET METADATA: STR()
> str(wcdata)
Classes ‘spec_tbl_df’, ‘tbl_df’, ‘tbl’ and 'data.frame': 15407 obs. of 4
8 variables:
 $ Obs_ID : chr "Obs_1" "Obs_2" "Obs_3" "Obs_4" ...
 $ Dependent : num 98679 55727 185833 98615 51396 ...
 $ Average.Weekly.Wage : num 500 1037 929 1226 NA ...
 $ Body.Part : chr "Pelvis" "Low Back Area" "Low Back A
rea" "Multiple Body Parts" ...
 $ Body.Part.Code : num 46 42 42 90 18 30 42 42 42 54 ...
 $ Cause : chr "Struck or Injured By" "Strain or In
jury By" "Strain or Injury By" "Strain or Injury By" ...
 $ Cause.Code : num 1700 1500 1500 1500 1900 1500 1500 1
500 1500 1500 ...
 $ Claimant.Age : num 21 NA 63 49 51 55 49 36 45 45 ...
 $ Claimant.Atty.Firm.Name : chr NA NA "TROBINSON & CHUR ATTORNEYS AT
LAW" "IBARRY STEVENS;;M;;" ...
 $ Claimant.Gender : chr "Female" "Male" "Male" "Male" ...
 $ Claimant.Gender.Code : chr "F" "M" "M" "M" ...
 $ Claimant.Hire.Date : chr "4/3/2001" "5/15/2001" "5/15/2001" N
A ...
 $ Claimant.Marital.Status : chr NA NA "Married" NA ...
 $ Claimant.Marital.Status.Code : chr NA NA "M" NA ...
 $ Claimant.State : chr "California" "California" "Hawaii" "
Idaho" ...
 $ Claimant.State.Code : chr "CA" "CA" "HI" "ID" ...
 $ Department.Code : logi NA NA NA NA NA NA ...
 $ Detail.Cause : chr "Struck by Falling/Flying Object" "S
train/Injury by Lifting" "Strain/Injury by Carrying" "Strain/Injury by Repeti
tive Motion" ...
 $ Detail.Cause.Code : num 75 56 55 97 90 97 60 97 97 97 ...
 $ Domestic.vs..Foreign. : chr "Domestic" "Domestic" "Domestic" "Do
mestic" ...
 $ Domestic.vs..Foreign..Code : chr "D" "D" "D" "D" ...
 $ Dt.Reported.to.Carrier.TPA : Date, format: "2001-04-17" "2001-05-25" .
..
 $ Dt.Reported.to.Employer : Date, format: "2001-04-13" "2001-
05-24" .

DPLYR USED FOR DATA MANAGEMENT

oOptimized version of plyr package

oUse to subset, summarize, filter and join data

oR has functions such as subset and operators such as [] that can
perform data management functions but they can be difficult to use

oWe will use dplyr on Schedule P data downloaded from CAS web
site

oFirst read in the data

oNote that read_csv provides some metadata

DPLYR GRAMMAR
oselect() selects variables/columns from data frame

ofilter() subsets rows of data frame based on logical conditions

oarrange() reorders rows of data frame

orename() renames variables in data frame

omutate() performs variable transformations and adds variables

osummarize() summarizes/aggregates data from a data frame

o%>% pipe operators used to link multiple verb actions
together

DPLYR FUNCTIONS

oFirst argument is a data frame

oSubsequent arguments describe what is to be done

oYou can refer to columns without using dollar operator

oReturn result is a new data frame

oThe dataframe needs to be tidy

WE DO NOT NEED ALL THE COLUMNS

[1] "Obs_ID" "Dependent"
 [3] "Average Weekly Wage" "Body Part"
 [5] "Body Part Code" "Cause"
 [7] "Cause Code" "Claimant Age"
 [9] "Claimant Atty Firm Name" "Claimant Gender"
[11] "Claimant Gender Code" "Claimant Hire Date"
[13] "Claimant Marital Status" "Claimant Marital Status Code"
[15] "Claimant State" "Claimant State Code"
[17] "Department Code" "Detail Cause"
[19] "Detail Cause Code" "Domestic vs. Foreign?"
[21] "Domestic vs. Foreign? Code" "Dt Reported to Carrier/TPA"
[23] "Dt Reported to Employer" "Employment Status"
[25] "Employment Status Code" "Date of Injury/Illness"
[27] "Handling Office Name" "How Injury Occurred"
[29] "Injury/Illness City" "Injury/Illness Postal"
[31] "Injury/Illness State" "Injury/Illness State Code"
[33] "Jurisdiction" "Jurisdiction Code"
[35] "Lost Time or Medical Only?" "Lost Time or Medical Only? Code"
[37] "Nature of Injury/Illness" "Nature of Injury/Illness Code"
[39] "Number of Dependents" "OSHA Injury Type"
[41] "OSHA Injury Type Code" "Severity Index Code"
[43] "Severity Index Code Code" "Time of Injury/Illness"
[45] "Type of Loss" "Type of Loss Code"
[47] "Policy Year" "Reforms_dummy"

SELECT()

oWe do not need all the columns

oOnly keep those relevant to analysis

oUse select() to extract only needed columns

oLet’s take the first 10 columns

wcdata2<-select(wcdata, 1:10)

names(wcdata2) > names(wcdata2)
 [1] "Obs_ID" "Dependent"
 [3] "Average.Weekly.Wage" "Body.Part"
 [5] "Body.Part.Code" "Cause"
 [7] "Cause.Code" "Claimant.Age"
 [9] "Claimant.Atty.Firm.Name" "Claimant.Gender"

SELECT BY ELIMINATION

oLeave out variables we don’t want by using a “-” within select
function

oIn this example, we eliminate variables that are duplicates of
other variables, such as Jurisdiction and Jurisdiction.Code

oWe will keep the “Code” variable

wcdata2<-select(wcdata, -Body.Part,-Cause,

-Claimant.Hire.Date,-Detail.Cause,-Injury.Illness.State,

-Jurisdiction, -Nature.of.Injury.Illness,

-OSHA.Injury.Type,-Type.of.Loss)

SELECT()

Can select columns based on patterns in name
starts_with

ends_with

contains

matches

FILTER()

oSelects rows based on filter applied to values in rows

oSimilar to subset but faster

oCan be used to eliminate records with clearly erroneous values

oSuch as selecting either lost time or medical only claims for modeling

wcdata3<-filter(wcdata2, Lost.Time.or.Medical.Only..Code=="MO")

oCan have multiple conditions (using &, ||)

ARRANGE()

Use arrange() for sorting
wcdata2<-arrange(subset,desc(Dependent))

wcdata4<-arrange(wcdata3, desc(Dependent))

wcdata4[1:5,1:4]

It is easier to use than sort()

Use desc(varname) to sort descending

Can use .by_group to sort by a group

SORTED DATA

wcdata4[1:5,1:4]
A tibble: 5 x 4
 Obs_ID Dependent Average.Weekly.Wage Body.Part.Code
 <chr> <dbl> <dbl> <dbl>
1 Obs_2673 3774290 403 90
2 Obs_14692 1159631 3138 43
3 Obs_14673 1086522 939 51
4 Obs_13477 1083067 2303 12
5 Obs_578 1076883 1050 41

MUTATE()

oUsed to perform variable transformations

oMost Predictive Modeling projects need a variety of transformations:

oFor instance, we may want to log highly skewed variables

MUTATE DEPENDENT VARIABLE

wcdata4<-mutate(wcdata4,logDependent=log(Dependent+1))

qplot(logDependent,data=wcdata4)

OTHER TRANSFORMATIONS

oIndicator variables to Identify missing's in variables

oCompute time lag variables (Report lag to employer,
report lag to carrier)

GROUP_BY(), SUMMARIZE()

oCan be used to group data by a variable or variables and then
summarize

oLets compute some state level statistics using claimant state:
oGet size in database by counting the number of records for each state
oUse result to reduce cardinality by grouping all low count states into
one “small” category

byState=group_by(wcdata4,Claimant.State)

StateSize=summarize(byState,count=n())

StateSize=mutate(StateSize,rankState=min_rank(desc(count)))

head(StateSize)
head(StateSize)
A tibble: 6 x 3
 Claimant.State count rankState
 <chr> <int> <int>
1 Alabama 63 24
2 Arizona 65 22
3 California 8912 1
4 Canada - British Columbia 4 44
5 Colorado 65 22
6 Connecticut 71 21

USING THE PIPE OPERATOR

A different way of organizing code

The logical sequence of the code is more natural

A way of executing steps or nested code/ functions

The pipe operator is %>%

REDO GROUP_BY AND SUMMARIZE WITH PIPE
OPERATOR
StateSize<- wcdata3 %>% group_by(Claimant.State.Code) %>%

summarize(count=n()) %>%

mutate(r=min_rank(desc(count)))

oThe pipe operator is denoted with “%>%”

oIt moves from left to right

oThe database comes first

oThen the procedures performed on it in chronological order

JOINING DATA

Used to merge datasets

Certain joins are like a VLOOKUP in Excel

inner_join()

left_join()

right_join()

full_join()

We can use a join to join the StateSize data into the data file

JOINING THE GROUPED DATA BACK INTO
ORIGINAL DATA
wcdata5
=inner_join(wcdata4,StateSize,by="C
laimant.State.Code")

names(wcdata5)

Or

wcdata5
=right_join(wcdata4,StateSize,by="C
laimant.State.Code")

names(wcdata5)

> names(wcdata5)
 [1] "Obs_ID"
 [2] "Dependent"
 [3] "Average.Weekly.Wage"
 [4] "Body.Part.Code"
 [5] "Cause.Code"
 [6] "Claimant.Age"
 [7] "Claimant.Atty.Firm.Name"
 [8] "Claimant.Gender"
 [9] "Claimant.Gender.Code"
[10] "Claimant.Marital.Status"
[11] "Claimant.Marital.Status.Code"
[12] "Claimant.State.Code"
[13] "Department.Code"
[14] "Detail.Cause.Code"
[15] "Domestic.vs..Foreign."
[16] "Domestic.vs..Foreign..Code"
[17] "Dt.Reported.to.Carrier.TPA"
[18] "Dt.Reported.to.Employer"
[19] "Employment.Status"
[20] "Employment.Status.Code"
[21] "Date.of.Injury.Illness"
[22] "Handling.Office.Name"
[23] "How.Injury.Occurred"
[24] "Injury.Illness.City"
[25] "Injury.Illness.Postal"
[26] "Injury.Illness.State.Code"
[27] "Jurisdiction.Code"
[28] "Lost.Time.or.Medical.Only."
[29] "Lost.Time.or.Medical.Only..Code"
[30] "Nature.of.Injury.Illness.Code"
[31] "Number.of.Dependents"
[32] "OSHA.Injury.Type.Code"
[33] "Severity.Index.Code.Code"
[34] "Time.of.Injury.Illness"
[35] "Type.of.Loss.Code"
[36] "Policy.Year"
[37] "Reforms_dummy"
[38] "logDependent"
[39] "WageMissing"
[40] "count"
[41] "rankState"

