Antitrust Notice

The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the antitrust laws. Seminars conducted under the auspices of the CAS are designed solely to provide a forum for the expression of various points of view on topics described in the programs or agendas for such meetings.

Under no circumstances shall CAS seminars be used as a means for competing companies or firms to reach any understanding - expressed or implied - that restricts competition or in any way impairs the ability of members to exercise independent business judgment regarding matters affecting competition.

- It is the responsibility of all seminar participants to be aware of antitrust regulations, to prevent any written or verbal discussions that appear to violate these laws, and to adhere in every respect to the CAS antitrust compliance policy.

GLM II: Basic Modeling Strategy

Ernesto Schirmacher

Bentley University

Casualty Actuarial Society
Ratemaking and Product Management Seminar
March 25-27, 2019
Boston, MA

Overview

Quick Review of GLMs
Project Cycle
Modeling Cycle
Model Complexity
Personal Auto Claims Example
Exploratory Analysis
Build, Test, Validate
Exposure Adjustments
Initial Modeling

Simplify
Complicate
Residual Analysis
Analysis of Deviance
Interactions
Consistency across time
Testing link/variance functions
Constraints
Summary

Basic GLM Specification

$$
g(\mathbb{E}[y])=\beta_{0}+x_{1} \beta_{1}+\cdots+x_{k} \beta_{k}+\text { offset }
$$

1. The link function is g
2. The distribution of y is a member of the exponential family
3. The explanatory variables x_{i} may be continuous or discrete
4. The offset term can be used to adjust for exposure or to introduce known restrictions

Basic GLM Specification

$$
g(\mathbb{E}[y])=\beta_{0}+x_{1} \beta_{1}+\cdots+x_{k} \beta_{k}+\text { offset }
$$

1. The link function is g
2. The distribution of y is a member of the exponential family
3. The explanatory variables x_{i} may be continuous or discrete
4. The offset term can be used to adjust for exposure or to introduce known restrictions

$$
\mathbb{E}[y]=g^{-1}\left(\beta_{0}+x_{1} \beta_{1}+\cdots+x_{k} \beta_{k}+\text { offset }\right)
$$

Common Model Forms

Target Variable

Claim Frequency	Claim Counts	Average Claim Amount	Proba- bility
$\log (\mu)$	$\log (\mu)$	$\log (\mu)$	$\operatorname{logit}(\mu)$
Poisson	Poisson	Gamma	Binomial
μ	μ	μ^{2}	$\mu(1-\mu)$
Exposure	1	\# claims	1
0	$\log ($ Exposure $)$	0	0

Overall Project Cycle

Model Building Cycle

Model Complexity

1 parameter only best models overall mean

1 parameter
per observation useless model
simplify
complicate

Personal Auto Claims

The dataset contains 67,856 policies taken out in 2004 or 2005 . This is the car. csv dataset featured in the book by de Jong \& Heller [3].

The available variables are:

1. Driver age
2. Vehicle value (∞)
3. Gender
4. Garage location
5. Vehicle body
6. Vehicle age
7. Exposure (∞)
8. Claim?
9. Number of claims
10. Total claim cost (∞)
(∞) denotes a continuous variable. All other variables are categorical or counts.

Variable Descriptions

	Variable	Type	Comments
1.	Driver Age	Cat	$1=$ youngest, $2, \ldots, 6=$ oldest
2.	Gender	Cat	$\mathrm{F}=$ Female, $\mathrm{M}=$ Male
3.	Garage Location	Cat	$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$
4.	Vehicle Body	Cat	13 classes
5.	Vehicle Age	Cat	1 to $4=$ oldest
6.	Vehicle Value	Cont	range: 0 to 34.56, in units of $\$ 10 \mathrm{~K}$
7.	Exposure	Cont	range: 0.003 to 0.999
8.	Claim?	Cat	$0=$ no claim, $1=$ claim
9.	Number of Claims	Count	$0,1,2,3,4$
10.	Total Claim Cost	Cont	range: $\$ 0$ to $\$ 55,922$

Exploratory Analysis

- Tabular summaries
- Univariate exploration (along with exposure)
- Bivariate relationships
- Correlations

Preparing to Stay Honest

To this end split your data into three sets:

1. Build: used to create many models
2. Test: used to check intermediate models
3. Validate: used only once to check your final model

One rule of thumb: $(50 \%, 25 \%, 25 \%)$.

Set	Records
Build	33,928
Test	16,964
Validate	16,964
Total	67,856

Preparing to Stay Honest

What if you don't have a large dataset that would allow you to split it in three segments (Build, Test, Validate)?

Use Cross-Validation!

Summary Statistics for Build Dataset

Continuous Variables

	total claim cost		
		exposure	veh.value
Min. \quad	0.0	0.003	0.000
1st Qu.:	0.0	0.219	1.010
Median :	0.0	0.446	1.500
Mean :	143.4	0.469	1.777
3rd Qu.:	0.0	0.709	2.150
Max. $: 55920.0$	0.999	34.560	

Vehicle value is in units of $\$ 10,000$.

Summary Statistics for Build Dataset

Categorical Variables (record counts)

veh.body	veh.age	area
SEDAN:11149	1: 6017	A: 8216
HBACK: 9372	2: 8332	B: 6603
STNWG: 8114	$3: 10126$	C:10344
UTE $: 2351$	$4: 9453$	D: 4035
TRUCK: 886		E: 2971
HDTOP: 770		F: 1759
COUPE: 396		
PANVN: 378		
MIBUS: 373		
MCARA: 60		
CONVT: 37		
BUS :	27	
RDSTR:	15	

Summary Statistics for Build Dataset

Categorical Variables (record counts)

			claim	
age.cat	gender	claim?	count	
$1: 2852$	$\mathrm{~F}: 19264$	No :31599	$0: 31599$	
$2: 6501$	$\mathrm{M}: 14664$	Yes: 2329	$1: 2185$	
$3: 7971$			$2:$	133
$4: 8086$			$3:$	10
$5: 5290$			$4:$	1

6:3228

Summary Statistics for Build Dataset

Categorical Variables (record counts)

			claim	
age.cat	gender	claim?	count	
$1: 2852$	$\mathrm{~F}: 19264$	No $: 31599$	$0: 31599$	
$2: 6501$	$\mathrm{M}: 14664$	Yes: 2329	$1: 2185$	
$3: 7971$			$2:$	133
$4: 8086$			$3:$	10
$5: 5290$			$4:$	1

What is the claim frequency?

A naive GLM model for Claim Counts

Call: glm(formula $=$ num.claims ~ 1 ,

$$
\begin{aligned}
\text { family } & =\text { poisson(link }=\text { "log") } \\
\text { data } & =\operatorname{car}[b . i d x,])
\end{aligned}
$$

Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) -2.61397 $0.02006-130.3<2 \mathrm{e}-16 * * *$

Null deviance: 13437 on 33927 degrees of freedom Residual deviance: 13437 on 33927 degrees of freedom

A naive GLM model for Claim Counts

Call: glm(formula $=$ num.claims ~ 1 ,

$$
\begin{aligned}
\text { family } & =\text { poisson(link }=\text { "log") } \\
\text { data } & =\operatorname{car}[b . i d x,])
\end{aligned}
$$

Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) -2.61397 $0.02006-130.3<2 \mathrm{e}-16 * * *$

Null deviance: 13437 on 33927 degrees of freedom Residual deviance: 13437 on 33927 degrees of freedom

$$
e^{-2.61397}=0.0732
$$

How to adjust for Exposure?

For a frequency model with a log-link we have

$$
\log \left(\frac{\mathbb{E}[\text { counts }]}{\text { exposure }}\right)=\text { linear predictor }
$$

$$
\log (\mathbb{E}[\text { counts }])=\text { linear predictor }+\underbrace{\log (\text { exposure })}_{\text {offset term }}
$$

A simple GLM model for Claim Counts

```
Call: glm(formula = num.claims ~ 1,
    family = poisson(link = "log"),
    data \(=\) car[b.idx, ],
    offset \(=\log (\) exposure))
```

Coefficients:

	Estimate Std. Error z value $\operatorname{Pr}(>\|z\|)$			
(Intercept)	-1.85591	0.02006	-92.52	$<2 e-16 * * *$

Null deviance: 12864 on 33927 degrees of freedom Residual deviance: 12864 on 33927 degrees of freedom

$$
e^{-1.85591}=0.1563=\frac{2485}{15897.84}
$$

Initial Frequency Model

Variables included in the model:

1. gender
2. area
3. age category

Variables not included in the model:

1. vehicle body
2. vehicle age
3. vehicle value

Initial Frequency Model

glm(num.claims ~ gender + area + age.cat,

```
data = dta, subset = b.idx,
family = poisson(link = "log"),
offset = log(exposure))
```


FQ Estimated Coefficients

	Estimate	Std. Error	z value	$\operatorname{Pr}(>\|z\|)$	
(Intercept)	-1.849782	0.053461	-34.601	$<2 \mathrm{e}-16$	*
gender M	-0.008281	0.040575	-0.204	0.838279	
area A	0.013438	0.054652	0.246	0.805779	
area B	0.064011	0.057184	1.119	0.262975	
area D	-0.213205	0.074610	-2.858	0.004269	**
area E	0.041201	0.076134	0.541	0.588394	
area F	0.091002	0.089094	1.021	0.307058	
age.cat 1	0.277251	0.073570	3.769	0.000164	***
age.cat 2	0.077001	0.060403	1.275	0.202387	
age.cat 3	0.021269	0.057824	0.368	0.713002	
age.cat 5	-0.288950	0.070964	-4.072	$4.67 \mathrm{e}-05$	***
age.cat 6	-0.123044	0.080516	-1.528	0.126464	

FQ Estimated Age Parameters

FQ Estimated Geographic Area Parameters

FQ Estimated Gender Parameters

FQ Deviance Residuals

FQ Deviance Residuals

FQ Crunched Deviance Residuals

FQ Estimated Merged Age Parameters

FQ Estimated Merged Geographic Area Parameters

FQ Actual vs. Expected Vehicle Age

FQ Actual vs. Expected Vehicle Body

FQ Actual vs. Expected Vehicle Value

New Frequency Model with Vehicle Value

```
glm(num.claims ~ area.2 + age.cat. 2 + veh.val.cat,
data = dta, subset = b.idx,
family = poisson(link = "log"),
offset = log(exposure))
```


FQ Estimated Vehicle Value Parameters

FQ Estimated Polynomial Vehicle Value Parameters

Severity Modeling

$$
\begin{aligned}
& \text { glm(avg.cost } \sim \text { age.cat + gender, } \\
& \text { data }=\text { dtb, subset }=\mathrm{b} . i d x \\
& \text { family }=\text { Gamma(link }=\text { "log"), } \\
& \text { weights = num.claims) }
\end{aligned}
$$

SV Estimated Age Parameters

SV Estimated Gender Parameters

SV Std. Deviance Residuals vs. Predicted Values

Residuals for All Main Effects Variables

Residuals for All Main Effects with a Smooth

SV Estimated Merged Age Parameters

SV Include Vehicle Body

```
glm(avg.cost ~ age.cat.2 + gender + veh.body,
data = dtb, subset = b.idx,
family = Gamma(link = "log"),
weights = num.claims)
```


Analysis of Deviance Table

Response: avg.cost
Terms added sequentially (first to last)

		Diff	Resid	Resid			
	Df	Dev	Df	Dev	F	$\operatorname{Pr}(>F)$	
NULL			2328	3947.8			
age.cat. 2	1	45.097	2327	3902.7	14.10	0.00018	***
gender	1	44.111	2326	3858.6	13.79	0.00021	***
veh.body	11	31.073	2315	3827.5	0.88	0.55657	

SV Estimated Vehicle Body Parameters

SV Estimated Vehicle Value Parameters

SV Estimated Geographic Area Parameters

Interactions?

No interaction between Age and Gender

Interaction between Age and Gender

Interaction between Age and Gender?

Response: avg.cost
Terms added sequentially (first to last)

Consistency Across Time or Random Subsets

Checking the Link Function

Embed the link function in a family of functions. For example,

$$
\operatorname{link}(\mu)= \begin{cases}\mu^{\lambda} & \text { for } \lambda \neq 0 \\ \log \mu & \text { for } \lambda=0\end{cases}
$$

Deviance as λ varies

Source: Modified version of Fig. 11.1 in McCullagh \& Nelder p. 377.

Checking the Variance Function

Checking the Variance Function

Constraints via the Offset

$$
g(\mathbb{E}[y])=\beta_{0}+x_{1} \beta_{1}+\cdots+x_{k} \beta_{k}+\text { offset }
$$

1. Regulatory constraints
2. Own-company constraints

Refitting causes correlated variables to partially adjust.

Summary

- Exploratory analysis
- Build, test, validate
- Cross-validation
- Start with simple models
- Simplify
- Complicate
- Analysis of deviance table
- Residual plots
- Embed link/variance in a family
- Lift curves
- Other graphical methods

References

围 John M. Chambers, William S. Cleveland, Beat Kleiner, and Paul A. Tukey.
Graphical Methods for Data Analysis.
The Wadsworth Statistics/Probability Series. Wadsworth International Group, Belmont, California, 1983.
P P. McCullagh and J. A. Nelder.
Generalized Linear Models.
2nd Ed. Chapman \& Hall, 1989.
E- Piet De Jong and Gillian Z. Heller.
Generalized Linear Models for Insurance Data.
Cambridge University Press, 2008.

References

围 Peter K．Dunn and Gordon K．Smyth．
Randomized quantile residuals．
Journal of Computational and Graphical Statistics，5（3）：236－244， 1996.

图 L．Fahrmeir and G．Tutz．
Multivariate Statistical Modelling Based on Generalized Linear Models．
Springer， 2001.
目 James Hardin and Joseph Hilbe．
Generalized Linear Models and Extensions．
Stata Press，College Station，Texas， 2001.
圊 W．N．Venables and B．D．Ripley．
Modern Applied Statistics with S．
Springer New York， 2002.

