

CAS RPM Boston, March 2019

Automated Machine Learning for Insurance Applications

Eliade Micu, PhD, FCAS Director, Research and Development, Clyde Analytics

CONFIDENTIAL | www.clyde-analytics.com

Presentation Outline

Automated Machine Learning

Motivation Hyperparameter Optimization Evolutionary Algorithms Feature Creation and Selection Component Algorithms

Insurance Applications

Problem Description Results

Conclusions

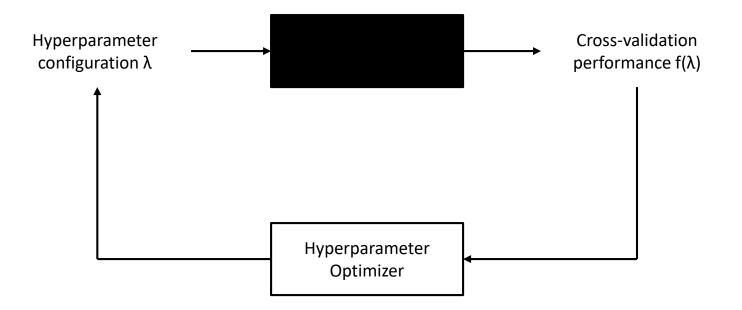
Motivation for Automated Machine Learning

- Demand for machine learning experts has outpaced the supply
- Human machine learning experts perform the following tasks:
 - Preprocess and clean the data
 - Construct and select appropriate features
 - Select an appropriate model family
 - > Optimize model hyperparameters
 - Postprocess machine learning models
 - Critically analyze the results obtained
- Need user-friendly machine learning software that can be used by non-experts
- Automated Machine Learning attempts to optimize the *inner loop*

Hyperparameter Optimization

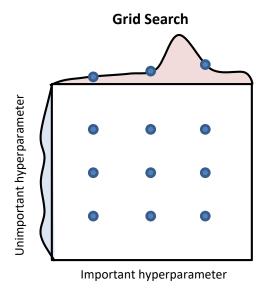
- Hyperparameter types:
 - Continuous (e.g. learning rate for gradient boosting), integer(e.g. number of trees in ensemble)
 - Categorical: unordered, finite domain, e.g. {GBM, Neural Network, Random Forrest}
- Hyperparameter space has structure:
 - > Top level parameter A selects algorithm
 - > Learning rate parameter λ is active only if A = GBM
 - \succ λ is a conditional hyperparameter with parent A
- Hyperparameters give rise to a structured space of algorithms:
 - ➤ Many configurations (e.g. 10¹⁰)
 - Configurations often yield qualitatively different behavior

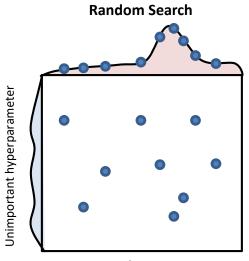
Blackbox Hyperparameter Optimization



Optimization Strategy: Random Search

- Select configurations of hyperparameters to test uniformly at random:
 - Completely uninformed
 - > Performs global search, will not get stuck in a local optimum
 - Better than grid search





Important hyperparameter

Optimization Strategy: Stochastic Methods

- Stochastic local search:
 - > Combines intensification and diversification steps
 - Intensification: gradient descent
 - > Diversification: restarts, random steps, perturbations
 - Example: Simulated Annealing
- Population based methods:
 - Search is both local and global via the population
 - Maintain population fitness and diversity
 - Examples: Genetic Algorithms, Evolutionary Strategies

Evolutionary Computing

• Draws inspiration from natural evolution:

Evolution	Problem Solving	
Environment	Problem	
Individuals	Candidate solutions	
Survival fitness	Solution quality	

• Darwinian Evolution:

- Population consists of diverse set of individuals
- Combinations of traits that are better adapted tend to increase representation in population:

Individuals are "units of selection"

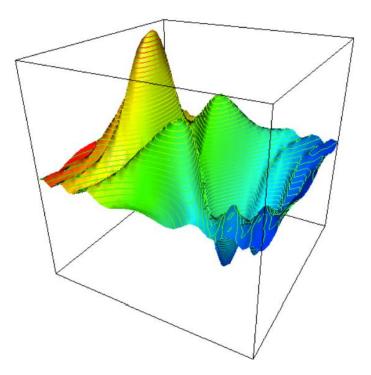
> Variations occur through random changes yielding constant source of diversity, coupled with selection:

Population is the "unit of evolution"

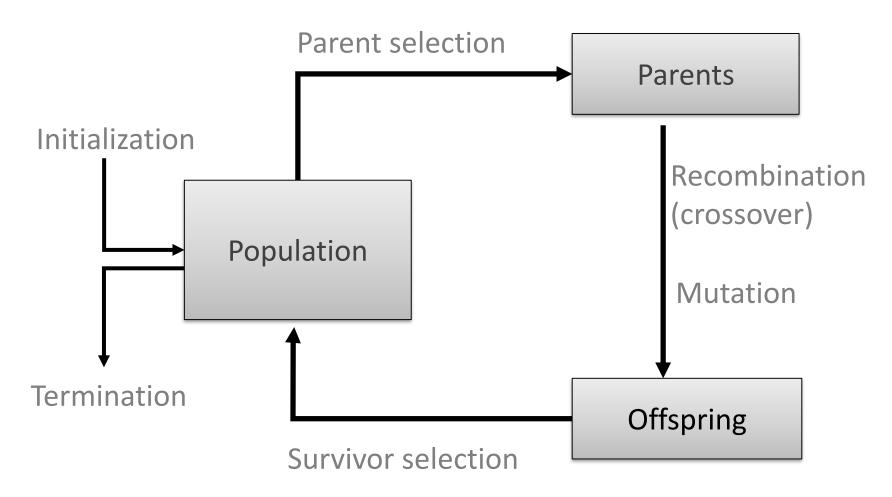
There is no "guiding force"

Adaptive Landscape Metaphor (Wright, 1932)

- Population with *n* traits exists in a *n*+1-dimensional space (landscape) with height corresponding to fitness
- Each different individual (phenotype) represents a single point on the landscape
- Population is therefore a "cloud" of points, moving on the landscape over time as it evolves: adaptation
- Selection "pushes" population up the landscape
- Problem is "multimodal"
- Genetic drift:
 - Highly fit individuals may be lost
 - Can cause the population to "melt down" hills,
 thus crossing valleys and leaving local optima



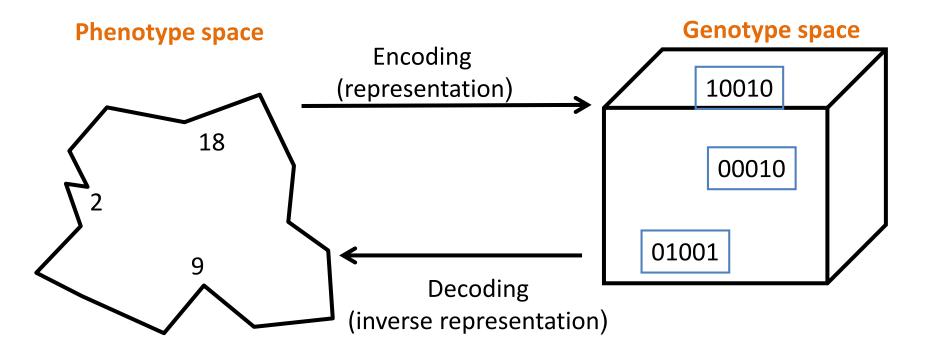
General Scheme of Evolutionary Algorithms



Dialects of Evolutionary Computing

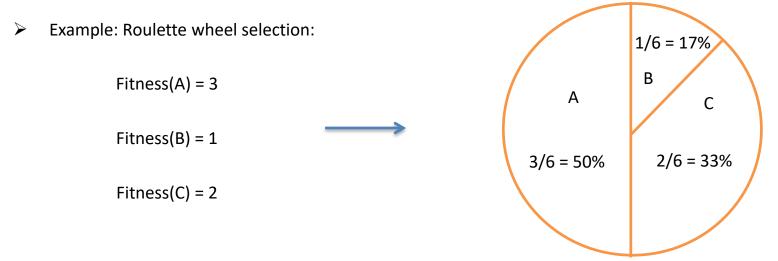
- Generally differ on candidate solution representation:
 - Genetic Algorithms (GAs): strings over a finite alphabet
 - Evolution Strategies (EAs): real-valued vectors
 - Classical Evolutionary Programming (EP): finite-state machines
 - Genetic Programming (GP): parse trees
- One representation may be preferable if it matches problem representation better:
 - Checkers-playing program: parse trees or finite state machines (EP or GP)
 - Satisfiability problem on *n* variables: bit-strings of length *n* (GA)
- Variation operators (recombination and mutation) are representation specific
- Selection process only takes fitness into account, so independent of representation

- Representation (definition of individuals):
 - Mapping from original objects (phenotypes) to EA objects (genotypes)
 - Whole search takes place in the genotype space
 - Solution is obtained by decoding the best genotype after termination
 - Example: for integer optimization problems, map each integer into its base 2 representation:



- Evaluation (fitness) function:
 - Represents the task to solve, the requirements to adapt to (can be seen as "the environment")
 - Enables selection (provides basis for comparison)
 - Assigns a single real-valued fitness to each genotype, which forms the basis for selection, so the more discrimination (different values) the better
- Population:
 - Holds the candidate solutions of the problem as individuals (genotypes)
 - Multiset of individuals, i.e. repetitions are possible
 - > Population is the basic unit of evolution, i.e., the population is evolving, not the individuals
 - Selection operators act on population level
 - Selection operators usually take whole population into account i.e., reproductive probabilities are relative to current generation
 - > Diversity of a population refers to the number of different fitnesses / phenotypes / genotypes present
 - Variation operators act on individual level

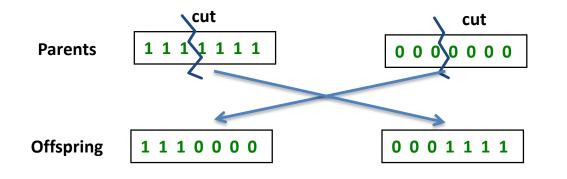
- Parent selection mechanism:
 - Identifies individuals to become parents
 - Pushes population towards higher fitness
 - Enables selection (provides basis for comparison)
 - Usually stochastic, high quality solutions more likely to be selected than low quality solutions (not guaranteed); even worst fit individual has non-zero probability of being selected
 - Stochastic nature aids in escaping from local optima

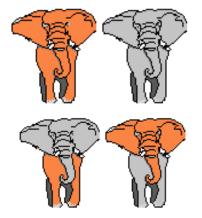


- Variation Operators
 - Generate new candidate solutions
 - Mutation: causes small, random variance, acts on one genotype and returns another

Before 1111111 \rightarrow \uparrow

Crossover: merges information from parents into offspring

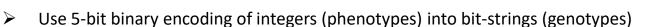




- Survivor selection mechanism (replacement):
 - Most EAs use fixed population size so need a way of going from parents + offspring to next generation
 - Often deterministic (while parent selection is usually stochastic)
 - Fitness based : rank parents + offspring and take best
 - Age based: make as many offspring as parents and delete all parents
 - Sometimes a combination of stochastic and deterministic (elitism)
- Initialization:
 - Usually done at random
 - Can include existing solutions, or use problem-specific heuristics, to "seed" the population
- Termination condition:
 - Checked every generation
 - Reaching some maximum allowed number of generations
 - Reaching some minimum level of diversity
 - Reaching some specified number of generations without fitness improvement

Example of Evolutionary Cycle

• Maximize f(x) = x² over the integers 0...31



- Roulette-wheel parent selection (proportional to fitness function value)
- Replace entire population with the offspring

String No.	Initial Population	Value of x	Fitness f(x) = x ²	Probability	Expected Count	Actual Count
1	01101	13	169	0.14	0.58	1
2	11000	24	576	0.49	1.97	2
3	01000	8	64	0.06	0.22	0
4	10011	19	361	0.31	1.23	1
Sum			1170		4.00	4
Average			293		1.00	1
Max			576		1.97	2

Example of Evolutionary Cycle (cont.)

• Crossover and offspring evaluation:

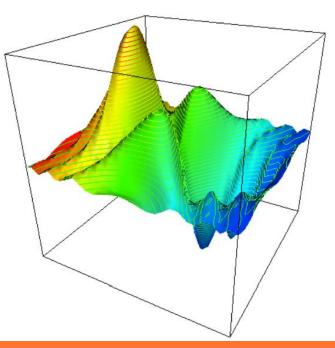
String No.	Mating Pool	Crossover Point	Offspring after xover	x Value	Fitness f(x) = x ²
1	0110 1	4	01100	12	144
2	1100 0	4	11001	25	625
2	11 000	2	11011	27	729
4	10 011	2	10000	16	256
Sum					1754
Average					439
Max					729

• Mutation and offspring evaluation:

String No.	Offspring after xover	Offspring after Mutation	x Value	Fitness f(x) = x ²
1	01100	11100	26	676
2	11001	11001	25	625
2	11011	11011	27	729
4	10000	10100	18	324
Sum				2354
Average				588.5
Max				729

Numerical Optimization: Differential Evolution

- Differential Evolution:
 - Storn & Price, 1997
 - > Designed to deal with multimodal objective functions, not necessarily continuous or differentiable
 - > Population members: n-dimensional real vectors, objective function assumed to be minimized
 - > **Differential Mutation**: add a perturbation vector to an existing one
 - > Initially designed for unconstrained optimization, can be extended to handle inequality constraints



Differential Evolution Description

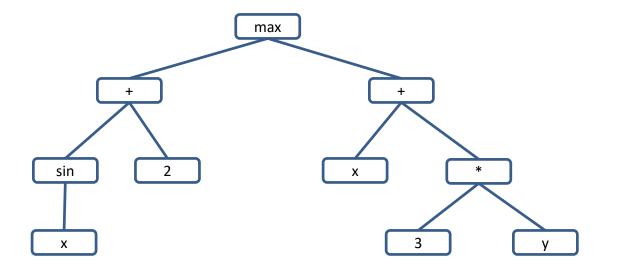
- Problem Setup:
 - ▶ Function $f: \mathbb{R}^k \to \mathbb{R}$ to be minimized
 - ▶ Box constraints on the arguments: $x_j \in [a_j, b_j]$ for j = 1, ..., k
- Population Initialization:
 - Random: $x_{ij} = a_j + \operatorname{rand}_j[0, 1) \cdot (b_j a_j)$, j = 1, ..., k; i = 1, ..., Np, where Np = population size
 - > If any inequality constraints present, force initial members to be in the feasible region
- Crossover:
 - Add a perturbation vector to each base vector: $\mathbf{v}_i = \mathbf{x}_i + F \cdot (\mathbf{x}_{r1} \mathbf{x}_{r2}), i = 1, ..., Np$

 $\blacktriangleright \quad \text{Generate target vector: } \mathbf{u}_{ij} = \begin{cases} \mathbf{v}_{ij} \text{ if } \operatorname{rand}_{j}[0,1) \leq \operatorname{Cr} \\ \mathbf{x}_{ij} \text{ otherwise} \end{cases}, j = 1, \dots, k.$

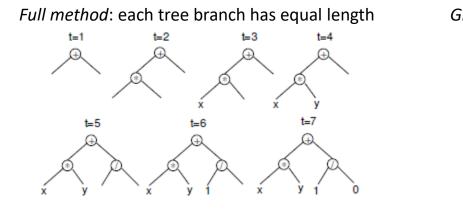
- Selection: replace \mathbf{x}_i with \mathbf{u}_i in the population if $f(\mathbf{u}_i) \le f(\mathbf{x}_i)$, keep \mathbf{x}_i otherwise
- **Typical parameter values:** $F \in [0.5, 1.0]$, $Cr \in [0.8, 1.0]$, $Np = 10 \cdot k$

Feature Generation by Genetic Programming

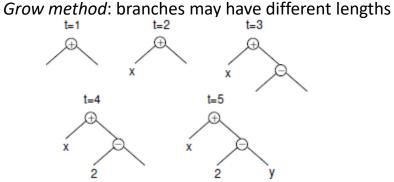
- Differences from other EA strands:
 - > Positioned as machine learning (as opposed to optimization): seek models with maximum fit
 - Uses parse trees as chromosomes (for arithmetic expressions, formulas in predicate logic, or code written in a given programming language)
 - Universe: set of functions $F = \{+, -, *, /, sin, min, max, if, <=, <, >=, >\}$ and set of terminals $T = \mathbb{R} \cup \{x, y\}$
 - Example expression: max(sin(x) + 2, x + 3 * y)



Genetic Programming (cont.)



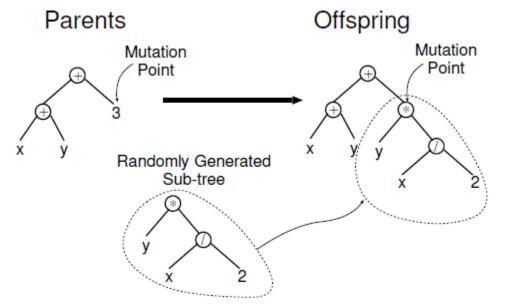
Initialization: ramped half-and-half, combination of full and grow



Crossover: Parents \longrightarrow Offspring Crossover Point (x+y)+3 (x/2)+3 (x/2)+3(x

Genetic Programming (cont.)

• Mutation:



- Fitness Function (Symbolic Regression example):
 - Given a set of *n* observations $(x_1, y_1, z_1), \dots, (x_n, y_n, z_n)$ find a function f(x, y) that approximates z
 - $\blacktriangleright \quad \text{Minimize } err(f) = \sum_{i=1}^{n} (f(x_i, y_i) z_i)^2$

Symbolic Regression Example

- ➢ 5M records, PPA data for 5 main coverages
- Model response: loss ratio; Model weights: earned fitted pure premium
- Function Set = {+, -, *, /, exp, abs, if}, Terminals = 20 numerical predictors + real constants
- Fitness function: Gini, Population size: 100, Evolution steps: 200
- Model trained on 60% of data chosen at random, validated on remaining 40%
- Sample expression (Individual #1, best Gini):

SAFE_EVAL(EXP((LOYALTY_MOD - 8.98)/7.769 - ((coll_vrg_curr - 23.247)/9.929 - (ab_vrg_curr - 32.32)/6.299)) * (EXP((LOYALTY_MOD - 8.98)/7.769 - ((dc_vrg_curr - 23.247)/9.929 - (ab_vrg_curr - 32.32)/6.299)) * EXP(0.742900070070423 - (TOT_VEH - 1.813)/0.947)))

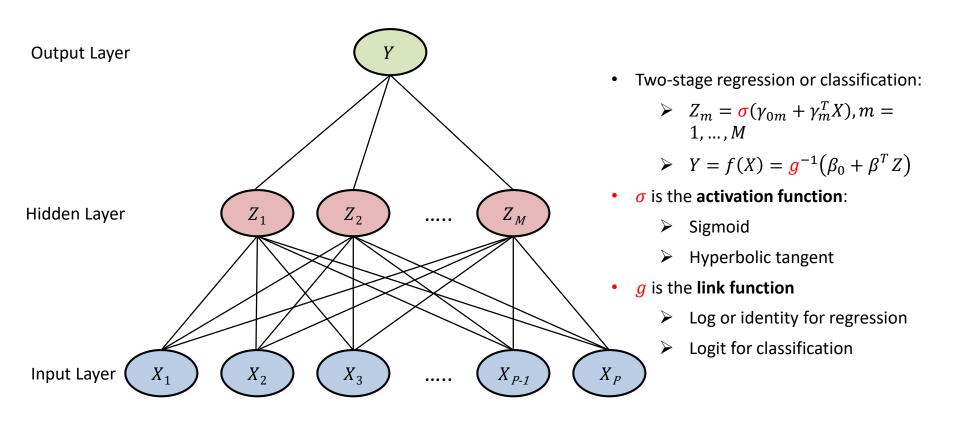
Individual (Top 10 Elite)	Lift	Validation Lift	Gini	Validation Gini	Correlation
1	2.00	2.03	0.106	0.106	99.37%
2	2.00	2.05	0.105	0.104	99.12%
3	2.05	2.07	0.105	0.105	98.39%
4	2.05	2.07	0.105	0.105	98.38%
5	2.05	2.07	0.105	0.105	98.39%
6	2.05	2.07	0.105	0.105	98.36%
7	2.05	2.07	0.105	0.105	98.37%
8	2.05	2.07	0.105	0.105	98.38%
9	1.89	1.97	0.103	0.107	97.51%
10	1.91	1.83	0.101	0.100	98.00%

AutoML Component Algorithms

- Penalized GLMs (ridge, lasso, elastic net)
- Neural Networks
- Ensembles:
 - Combines weak base learners that come from the same class, such as trees
 - Bagging: averaging predictions of weak learners trained independently on subsets of the data
 - Boosting: summing predictions of weak learners trained sequentially on modified versions of the data
- Stacked models (Super Learners):
 - Combines strong, diverse sets of learners together
 - > Trains a second-level "metalearner" to find the optimal combination of the base learners

Neural Networks

• Hyperparameters: *M* (number of nodes in hidden layer), σ , *g*, λ (regularization strength), *n* (number of hidden layers)



Fitting Neural Networks

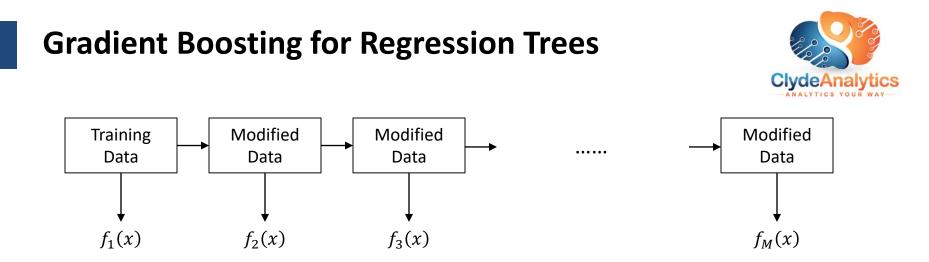
- Model parameters (complete set of network weights θ):
 - ► $\{\gamma_{0m}, \gamma_m : m = 1, ..., M\} \rightarrow M(P+1)$ weights
 - \succ { $β_0$, β} → M + 1 weights
 - Neural networks can approximate any continuous function with an arbitrary degree of precision by increasing M
- Error function:
 - \succ R(θ) = $\sum_{i=1}^{n} (y_i f(x_i))^2$ − sum of squared errors or deviance (regression)
 - $\succ R(\theta) = -\sum_{i=1}^{n} y_i \log f(x_i)$ cross-entropy (classification)
- Optimize penalized error $R(\theta) + \lambda \cdot P(\theta)$ to prevent overfitting:

$$P(\theta) = \sum_{m} \beta_{m}^{2} + \sum_{ml} \gamma_{ml}^{2} - \text{quadratic}$$

$$P(\theta) = \sum_{m} |\beta_{m}| + \sum_{ml} |\gamma_{ml}| - \text{linear}$$

$$P(\theta) = \sum_{m} \frac{\beta_{m}^{2}}{1 + \beta_{m}^{2}} + \sum_{ml} \frac{\gamma_{ml}^{2}}{1 + \gamma_{ml}^{2}} - \text{elimination}$$

- GLMs (and penalized GLMs) are a special case of neural network:
 - Deviance as the error function
 - Identity as the activation function
 - > One node in the hidden layer



- Hyperparameters: M (number of component trees), k (size of component trees), λ (learning rate)
- For m = 1, 2, ..., M do:
 - For each observation i = 1, 2, ..., n compute *pseudo residuals*:

$$r_{im} = y_i - f_{m-1}(x_i)$$

- Fit "weak" learner (regression tree with k terminal nodes) to r_{im} giving regions R_1, R_2, \dots, R_k
- For j = 1, 2, ..., k:
 - α_j = observed average for region R_j
- ▶ Update $f_m(x) = f_{m-1}(x) + λ \cdot \sum_{j=1}^k α_j \cdot I(x \in R_j)$
- Final model: $\hat{f}(x) = f_M(x)$

Super Learner Algorithm

- Set up the ensemble:
 - Specify a list of L base algorithms (with a specific set of hyperparameters for each)
 - Specify a **metalearning** algorithm, e.g. GLM with positive weights, GBM, NN, etc.
- Train the ensemble:
 - Train each of the L base algorithms on the training set
 - > Perform k-fold cross-validation on each of these learners and collect the cross-validated predicted values
 - Combine the N cross-validated predicted values from each of the L algorithms into a N x L matrix, to create the **level-one** data (N = number of rows in the training set)
 - > Train the metalearning algorithm on the level-one data, with the same response as the L base algorithms
- Predict on new data:
 - Generate predictions from the L base learners
 - > Feed those predictions into the metalearner to generate the ensemble prediction.

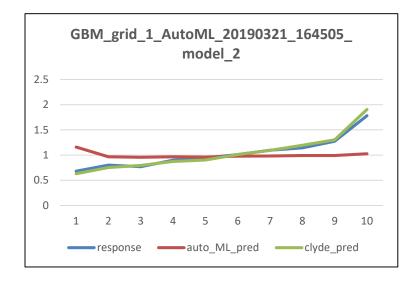
Insurance Application

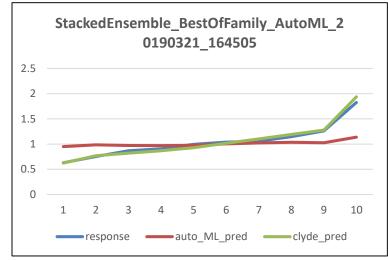
- **H**₂**0.ai** machine learning framework:
 - "Open source, in-memory, distributed, fast, and scalable"
 - Core written in Java, can be used from R or Python
 - AutoML component algos: Penalized GLMs (elastic net), Random Forests, Extremely Randomized Trees, GBM, Multi-layer NN (deep learning), Stacked Ensembles
 - > Candidate models are scored using 5-fold cross validation deviance
- Human expert:
 - Component algos: GLMs, customized versions of single-layer NN and boosted trees
 - > Pipeline: GLM, followed by single-layer NN on GLM residuals, followed by boosted trees on NN residuals
- PPA COLL dataset, 7M records, 35 predictors:
 - ➢ 60/40 train/validation split
 - Model Weights: EEXP · pred_GLM
 - Model Response: Observed_Loss / (EEXP · pred_GLM)

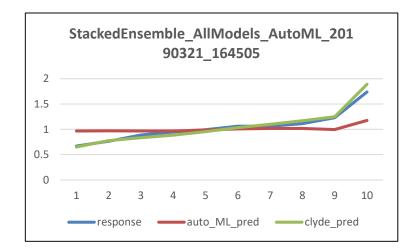
AutoML Leaderboard

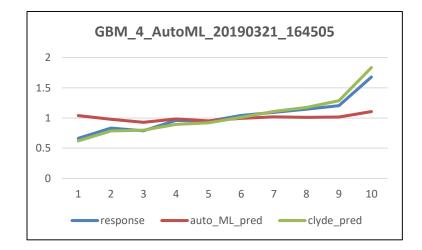
Model	Lift Train	Gini Train	Lift Valid	Gini Valid
XRT_1_AutoML_20190321_164505	538.99	0.65	1.26	0.05
DRF_1_AutoML_20190321_164505	1111.97	0.63	1.20	0.04
GBM_grid_1_AutoML_20190321_164505_model_2	35.22	0.49	1.88	0.12
GBM_5_AutoML_20190321_164505	28.05	0.37	1.42	0.08
GBM_grid_1_AutoML_20190321_164505_model_7	21.63	0.32	1.26	0.06
StackedEnsemble_BestOfFamily_AutoML_20190321_164505	6.12	0.29	2.20	0.12
StackedEnsemble_AllModels_AutoML_20190321_164505	5.47	0.27	2.21	0.13
GBM_4_AutoML_20190321_164505	6.49	0.21	2.11	0.13
GBM_grid_1_AutoML_20190321_164505_model_8	3.99	0.20	1.31	0.07
GBM_3_AutoML_20190321_164505	4.18	0.18	2.27	0.13
GBM_2_AutoML_20190321_164505	3.84	0.17	2.32	0.13
GBM_1_AutoML_20190321_164505	3.35	0.16	2.54	0.13
GBM_grid_1_AutoML_20190321_164505_model_6	3.84	0.14	1.20	0.11
GLM_grid_1_AutoML_20190321_164505_model_1	2.25	0.12	2.16	0.12
DeepLearning_grid_1_AutoML_20190321_164505_model_8	1.30	0.05	1.24	0.04
DeepLearning_grid_1_AutoML_20190321_164505_model_1	1.39	0.04	1.31	0.04
DeepLearning_grid_1_AutoML_20190321_164505_model_3	1.07	0.01	1.15	0.02
DeepLearning_grid_1_AutoML_20190321_164505_model_2	1.08	0.00	1.21	0.02
DeepLearning_grid_1_AutoML_20190321_164505_model_7	1.07	0.00	1.09	0.01
DeepLearning_1_AutoML_20190321_164505	0.71	0.00	0.80	0.01
Clyde_NN	3.01	0.17	2.35	0.14
Clyde_NN_Boosted_Tree	2.85	0.17	2.50	0.14

AutoML Double Lift Test

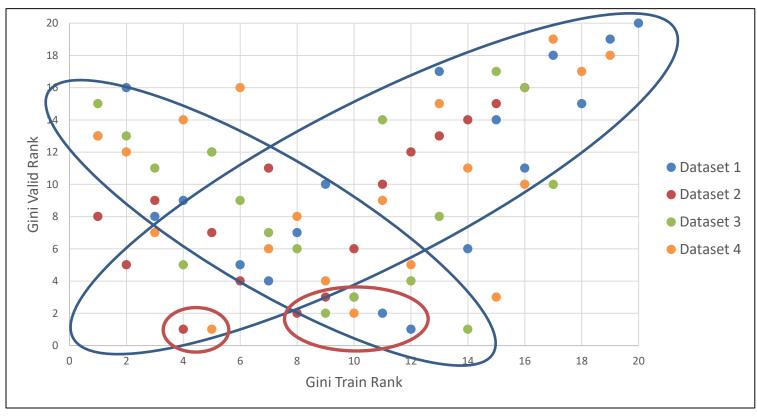








AutoML Generalization Performance



Sample	Gini Rank Correlation	Max Gini Valid	Line of Business	Model Response
Dataset 1	38.50%	0.13	PPA COLL	Loss Ratio
Dataset 2	68.24%	0.54	Comm Prop	Pure Prem
Dataset 3	-5.64%	0.07	HO All Perils	Loss Ratio
Dataset 4	46.75%	0.13	PPA All Coverages	Loss Ratio

Conclusions

- AutoML can successfully perform the following tasks:
 - Construct and select appropriate features
 - Select an appropriate model family
 - Optimize model hyperparameters
 - Postprocess machine learning models
- Relatively easy to use out of the box, decent default settings for some algorithms, such as GBM
- Produced (some) models with good performance
- Human expert still needed to inspect results for reasonableness and select the final model
- AutoML generates a large number of hypotheses, danger of "overfitting the validation data"
- AutoML performance depends on difficulty of problem, e.g. ground-up vs. residual analysis
- When in doubt, and with no prior knowledge about the domain, select a "middle-performing" model, not top models, to ensure better expected generalization performance
- Human experience plus customized algorithms in a custom pipeline can outperform AutoML