

Cluster Analysis in Loss Development

Dave Clark Victoria Jiang Munich Reinsurance America Inc.

RPM Conference – March 2019

Munich RE

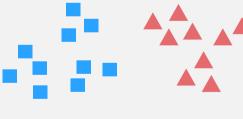
Agenda

- Introduction
- How to find clusters:
 - Cluster analysis
 - Principal Component Analysis (PCA)
 - Data transformation (curve fitting)
- Practical considerations
 - Correlations between LoB
 - Identifying drivers of loss development

Introduction What is Clustering?

- > Clustering is about finding groups in a set of objects
 - The objects in a group should be similar and groups should be different from each other
 - No need to define the groups in advance (i.e. unsupervised learning)
 - Essential to assess the usefulness and meaning of the identified groups

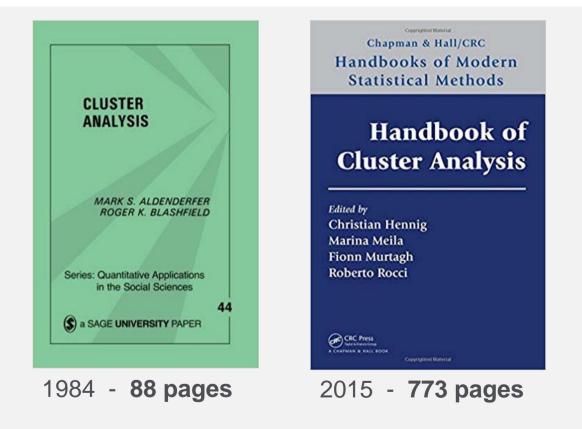
Original data



Two clusters

Introduction Publications on Clustering

Cluster Analysis has grown rapidly, especially as computer software has become more readily available.



Introduction Why Clustering?

- > What questions could be answered with cluster analysis?
 - Test the data homogeneity
 - Find a benchmark
- > What kind of data can be clustered?
 - Segments, contracts or claims
 - County or Region
 - Loss development patterns, loss ratios, severity, frequency...

Munich RE

Agenda

Introduction

How to find clusters:

- Cluster analysis Schedule P example
- Principal Component Analysis (PCA)
- Data transformation (curve fitting)
- Practical considerations
 - Correlations between LoB
 - Identifying drivers of loss development

Cluster Analysis Schedule P (Annual Statement) Example

Co.	Line	Ownersh	nip	Geograp	hic	Distribution
1	MedMal	Mutual		Regional		Direct, Ind Agency
2	MedMal	Stock		National		Direct, Ind Agency
3	PPAL	Stock		National		MGA, Ind Agency
4	PPAL	Stock		Regional		Ind Agency
5	WC	Stock		National		MGA
6	WC	Mutual		Regional		Ind Agency
Co.	24	36	48	 60	72	_
1	2.01	1.24	1.21	1.12	1.06	-
2	2.05	1.29	1.16	1.07	1.00	
3	1.20	1.09	1.05	1.03	1.01	
4	1.15	1.04	1.01	1.01	1.00	
5	1.34	1.14	1.07	1.04	1.02	
6	1.28	1.14	1.06	1.04	1.02	

. . .



Cluster Analysis Preparing Data

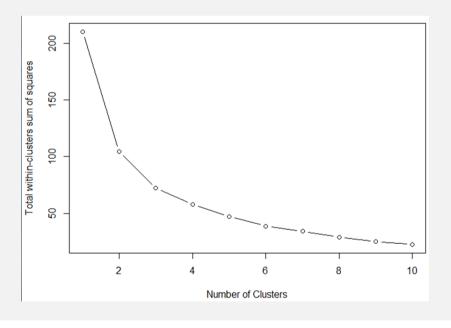
Explanatory Variables

Variables used for clustering, PCA, ...

Co.	Line	Ownership	Geographic	Distribution	24	36	48	60	72
1	MedMal	Mutual	Regional	Direct, Ind Agency	2.01	1.24	1.21	1.12	1.06
2	MedMal	Stock	National	Direct, Ind Agency	2.05	1.29	1.16	1.07	1.00
3	PPAL	Stock	National	MGA, Ind Agency	1.20	1.09	1.05	1.03	1.01
4	PPAL	Stock	Regional	Ind Agency	1.15	1.04	1.01	1.01	1.00
5	WC	Stock	National	MGA	1.34	1.14	1.07	1.04	1.02
6	WC	Mutual	Regional	Ind Agency	1.28	1.14	1.06	1.04	1.02

Cluster Analysis K-means Algorithm

- K-means partitions the data in a user-specified number of clusters (K), in which each observation belongs to the cluster with the nearest mean
- > No definitive answer for selecting K
 - Scree plot: locate the sharpest drop in within-cluster sum of squares



Cluster Analysis K-means Clustering Results



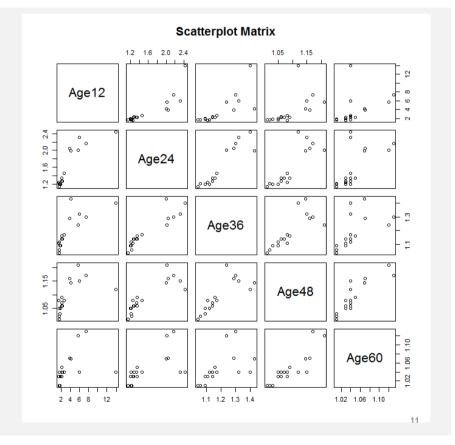
	K-means	K-means	K-medoids
LOB	2 clusters	3 clusters	3 clusters
MedMal	1	1	1
MedMal	1	1	1
MedMal	1	2	1
MedMal	1	1	1
MedMal	1	2	1
MedMal	1	2	1
PPAL	2	3	2
PPAL	2	3	2
PPAL	2	3	2
PPAL	2	3	2
PPAL	2	3	2
PPAL	2	3	2
WC	2	3	3
WC	2	3	3
WC	2	3	3
WC	2	3	3
WC	2	3	3
WC	2	3	3

Munich RE

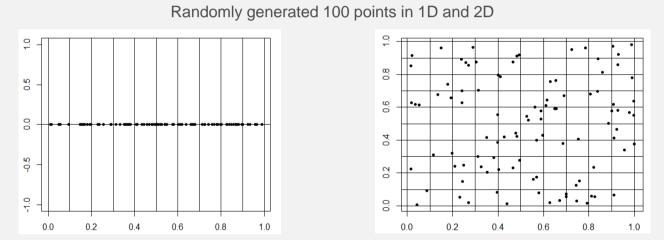
Cluster Analysis Too Many Dimensions

 Difficulty visualizing more than two dimensions for validation purposes

12	24	36	48	60	72
5.70	2.01	1.24	1.21	1.12	1.06
3.86	2.05	1.29	1.16	1.07	1.00
1.92	1.20	1.09	1.05	1.03	1.01
1.64	1.15	1.04	1.01	1.01	1.00
2.19	1.34	1.14	1.07	1.04	1.02
2.33	1.28	1.14	1.06	1.04	1.02



Cluster Analysis Too Many Dimensions



The performance of clustering algorithms relying on L₁ (sum of absolute values) or L₂ (Euclidian) metrics in high dimensional data may be compromised

Munich RE

Agenda

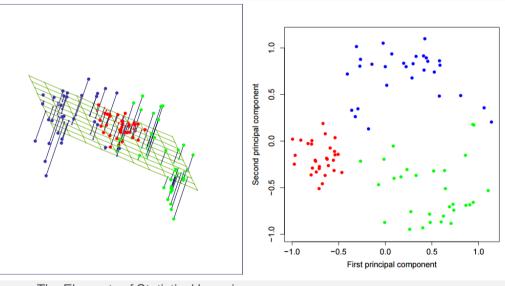
Introduction

How to find clusters:

- Cluster analysis Schedule P example
- Principal Component Analysis (PCA)
- Data transformation (curve fitting)
- Practical considerations
 - Correlations between LoB
 - Identifying drivers of loss development

PCA Principal Component Analysis

PCA stretches and rotates data with the goal to derive the best possible k-dimensional representation of the Euclidean distance among objects.

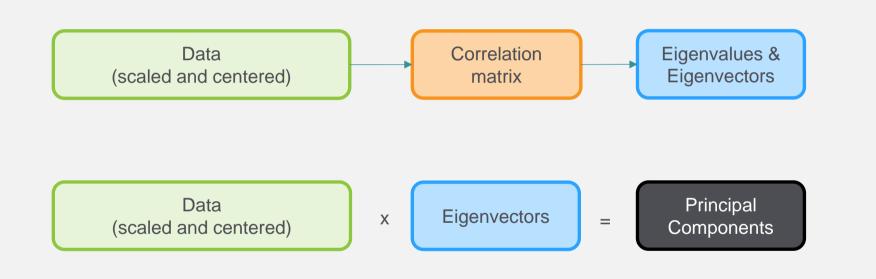


PCA Principal Component Analysis

Think about viewing a galaxy from "above" rather than the side: what angle do we want in order to get the most understanding of the "shape" of the galaxy?

Source: https://www.nasa.gov/feature/goddard/2017/a-new-angle-on-two-spiral-galaxies-for-hubbles-27th-birthday

PCA How to perform a PCA?

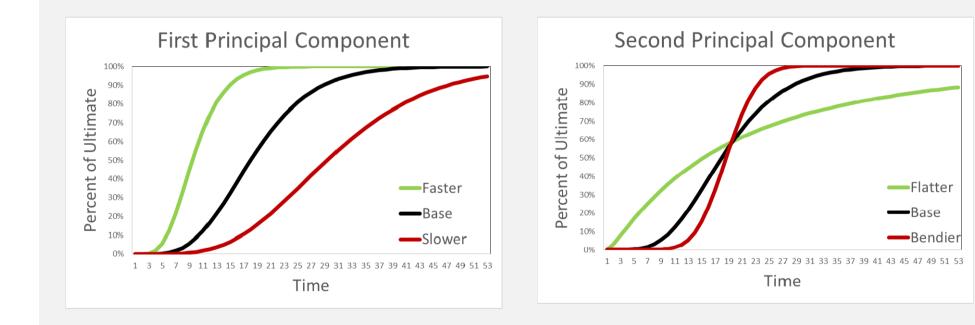


PCA Interpretation

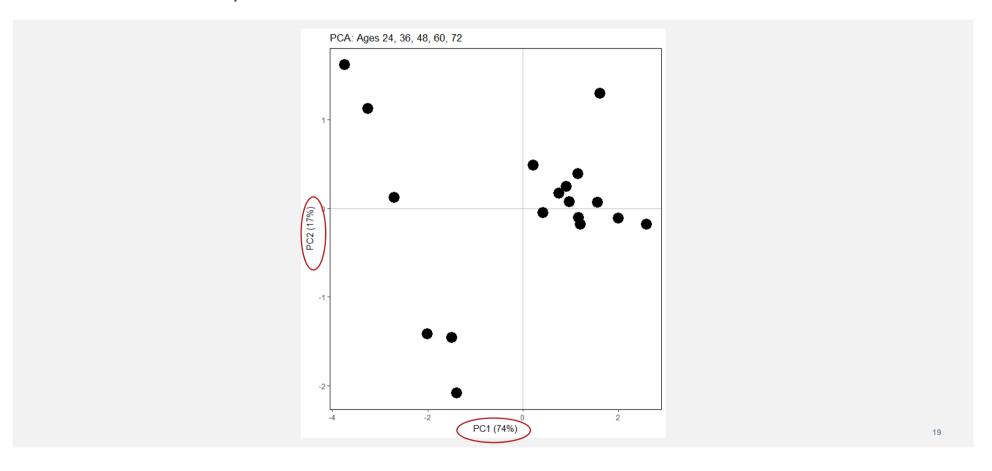
- > PCA provides an opportunity for interpretation
 - PC1 captures the mean loss development
 - PC2 indicates a change in the loss curve shape

Data (scaled and centered)					x	Ei	genvec	tors	=		Princ Compc			
Co 1 2 3 4	24 0.99 1.08 -0.83 -0.94	36 0.46 0.89 -0.82 -1.30	48 2.07 1.17 -0.75 -1.39	60 2.18 0.66 -0.60 -1.14	72 1.43 -1.04 -0.78 -0.96		Dim 24 36 48 60	1 0.47 0.46 0.49 0.46	2 -0.39 -0.38 -0.12 0.36	=	Co 1 2 3 4	PC1 3.18 1.45 -1.67 -2.57	PC2 1.04 -1.44 -0.07 -0.10	
							72	0.34	0.75					

PCA Interpretation



PCA Schedule P example: Visualization

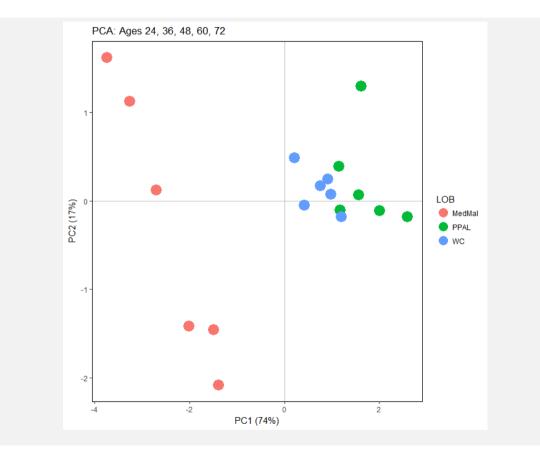


PCA Explanatory Variables

Explanatory Variables

Co.	Line	Ownership	Geographic	Distribution	24	36	48	60	72
1	MedMal	Mutual	Regional	Direct, Ind Agency	2.01	1.24	1.21	1.12	1.06
2	MedMal	Stock	National	Direct, Ind Agency	2.05	1.29	1.16	1.07	1.00
3	PPAL	Stock	National	MGA, Ind Agency	1.20	1.09	1.05	1.03	1.01
4	PPAL	Stock	Regional	Ind Agency	1.15	1.04	1.01	1.01	1.00
5	WC	Stock	National	MGA	1.34	1.14	1.07	1.04	1.02
6	WC	Mutual	Regional	Ind Agency	1.28	1.14	1.06	1.04	1.02
							5 8 2		

PCA Schedule P example: Visualization - LOB



Munich RE

Agenda

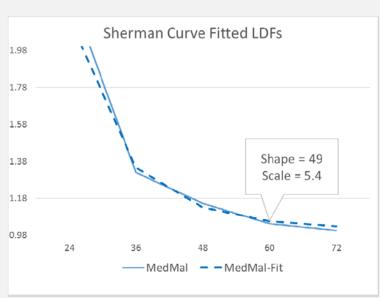
Introduction

How to find clusters:

- Cluster analysis Schedule P example
- Principal Component Analysis (PCA)
- Data transformation (curve fitting)
- Practical considerations
 - Correlations between LoB
 - Identifying drivers of loss development

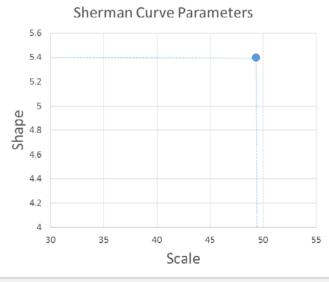
Data Transformation Sherman Curve

Sherman proposed a curve that fits to the typical LDF pattern



$$ATA_t = 1 + \left(\frac{Scale}{t+c}\right)$$
 Sherr

Shape



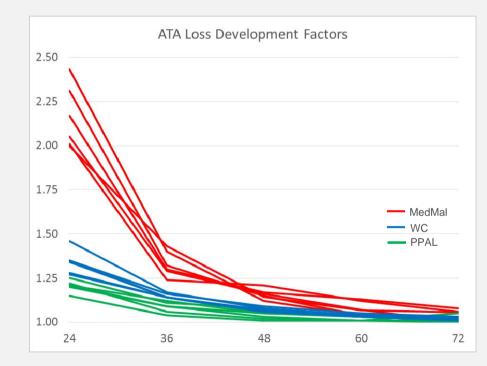


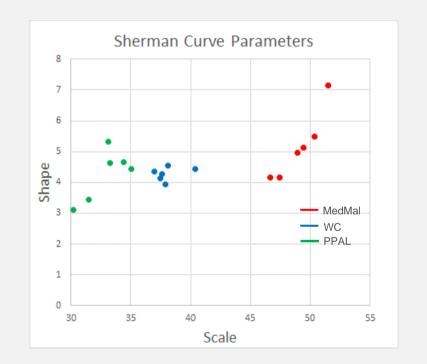
- > Sherman recommends estimating the parameters by using log-linear regression
 - All actual age-to-age factors must be strictly greater than 1
 - Fitting a logged value rather than actual amounts
- > GLM to the rescue!
 - Apply GLM with log-link on actual data

Data Transformation Pros & Cons

- Allows comparison of loss development patterns of different sizes
- Does not work well for flat curves
- > The focus is on the fit and not on maintaining the distances between points

Data Transformation Schedule P example: Sherman curve





Munich RE

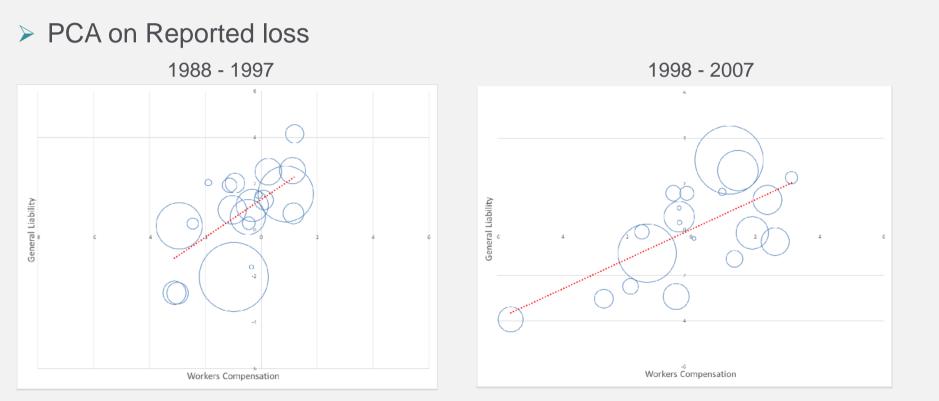
Agenda

- Introduction
- > How to find clusters:
 - Cluster analysis Schedule P example
 - Principal Component Analysis (PCA)
 - Data transformation (curve fitting)
- Practical considerations
 - Correlations between LoB
 - Identifying drivers of loss development

Practical Considerations Correlations between lines of business

- Compare the first principal component for two different lines, written by the same company
- Schedule P data for loss reserving posted on the CAS website
 - 54 companies with CAL and GL lines
 - 20 companies with WC and GL lines
 - Data is from 1988 to 1997
- Check if historical dependency is preserved in more recent years

Practical Considerations First principal component for WC/GL



Note: bubble size corresponds to a company's average yearly premium volume

Practical Considerations First principal component for CAL/GL



Note: bubble size corresponds to a company's average yearly premium volume

Munich RE

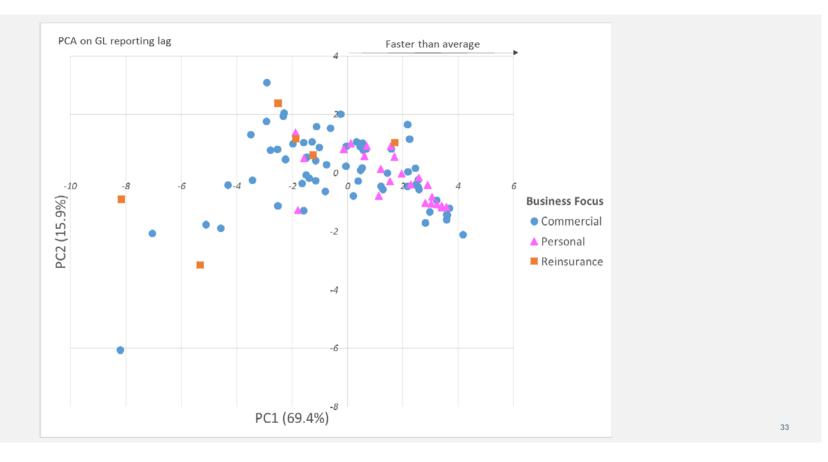
Agenda

- Introduction
- > How to find clusters:
 - Cluster analysis Schedule P example
 - Principal Component Analysis (PCA)
 - Data transformation (curve fitting)
- Practical considerations
 - Correlations between LoB
 - Identifying drivers of loss development

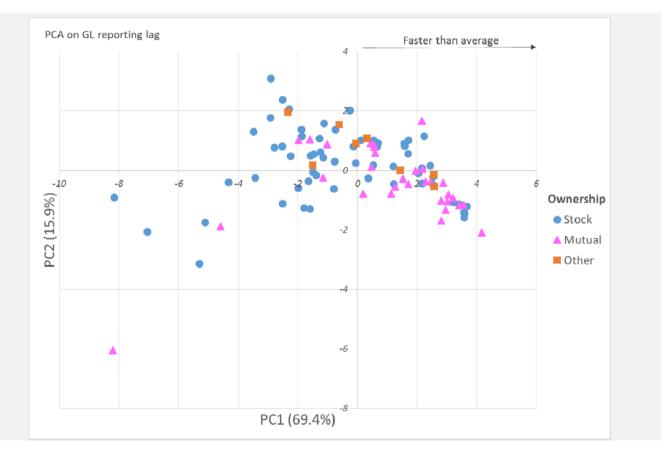
Practical Considerations What are the drivers of loss development?

- Identify potential predictors
 - Business focus (Commercial, Personal, Reinsurance)
 - Ownership (Stock, Mutual, Other)
 - Distribution channel (Broker vs Non-Broker)
 - Geography (Regional vs National)
- Schedule P GL data & SNL company profile
 - Top 100 insurers by market share
 - Loss data is from 2008 to 2017

Visualization: are the explanatory variables logical?

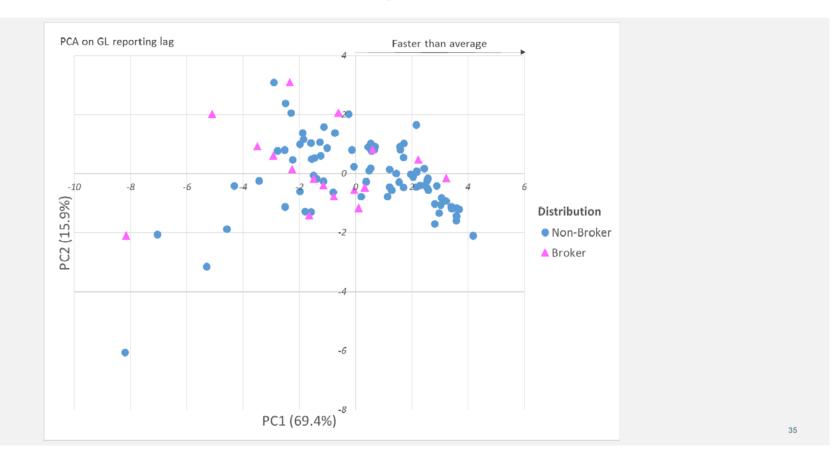


Visualization: are the explanatory variables logical?

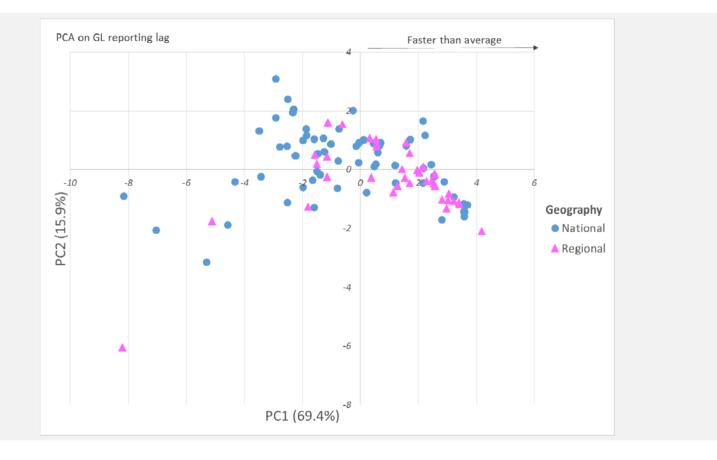


34

Visualization: are the explanatory variables logical?

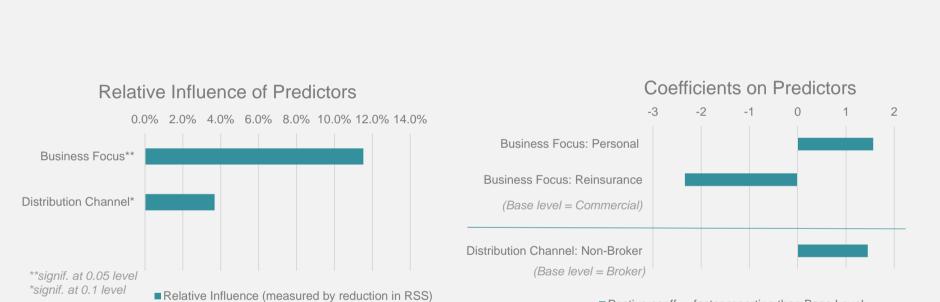


Visualization: are the explanatory variables logical?



Munich RE

Linear regression: are the explanatory variables logical?



■ Postive coeff. = faster reporting than Base Level

Conclusion Key Takeaways

- Clustering techniques help us obtain a better understanding of the loss development:
 - Explore the structure of data
 - Go beyond "just" practical grouping of data
 - Identify variables impacting the development
- Each method has strengths and weaknesses
 - Look for robustness between methods

Selected References

- 1. D. Clark (2017) Estimation of Inverse Power Parameters via GLM, Actuarial Review, May-June 2017, <u>https://ar.casact.org/estimation-of-inverse-power-parameters-via-glm/</u>
- 2. T. Hastie, R. Tibshirani, J. Friedman (2009) **The Elements of Statistical Learning Data Mining, Inference, and Prediction**, Springer https://web.stanford.edu/~hastie/Papers/ESLII.pdf
- 3. C. Hennig (2015) Clustering strategy and method selection, In C. Hennig, M. Meila, F. Murtagh, and R. Rocci (Eds.). *Handbook of Cluster Analysis*. Chapman and Hall/CRC, <u>http://www.homepages.ucl.ac.uk/~ucakche/</u>
- 4. C. Hennig, M.Meila, F. Murtagh, R.Rocci (2017) Handbook of Cluster Analysis, CRC Press
- 5. P. Tan, M. Steinbach, V. Kumar (2005) Cluster Analysis: Basic Concepts and Algorithms, In P. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining, Pearson Addison Wesley, <u>http://www-users.cs.umn.edu/~kumar/dmbook/index.php</u>
- 6. J. Shlens (2003) **A Tutorial on Principal Component Analysis: Derivation, Discussion and Singular Value Decomposition,** arXiv preprint arXiv:1404.1100, 2014, https://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition_jp.pdf
- 7. M. Steinbach, L. Ertoz, V. Kumar, **"The Challenges of Clustering High Dimensional Data"**, <u>https://www-users.cs.umn.edu/~kumar001/papers/high_dim_clustering_19.pdf</u>
- 8. J. VanderPlas, "Python Data Science Handbook", O'Reilly Media, http://shop.oreilly.com/product/0636920034919.do
- 9. CAS Schedule P data for Loss Reserving: http://www.casact.org/research/index.cfm?fa=loss reserves data

Thank you!

Appendix I: Soft Clusters and Mixed Models

- Soft (a.k.a. fuzzy) clustering allows each data point to belong to more than one cluster
- Membership grades are assigned to each data point
- In R, use fanny(data, k=2,...) from package "cluster" for fuzzy clustering
- Gaussian Mixed Models can also produce soft clusters

	Fuzzy 1	Fuzzy 2	Fuzzy 3
LOB	(MedMal)	(PPAL)	(WC)
MedMal	45%	27%	28%
MedMal	54%	22%	24%
MedMal	66%	17%	18%
MedMal	46%	26%	28%
MedMal	65%	17%	18%
MedMal	66%	17%	18%
PPAL	6%	57%	38%
PPAL	12%	51%	37%
PPAL	16%	44%	40%
PPAL	8%	55%	37%
PPAL	5%	45%	49%
PPAL	6%	49%	44%
WC	5%	51%	44%
WC	5%	41%	54%
WC	9%	36%	56%
WC	5%	34%	61%
WC	5%	37%	58%
WC	13%	36%	51%

41

Appendix II: R Packages

Important R packages:

- > Package "stats" (kmeans, prcomp,...) https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html
- > Package "cluster" (pam, fanny,...) https://cran.r-project.org/web/packages/cluster/cluster.pdf
- > Package "factoextra" (get_eigenvalue, fviz_cluster,...) https://cran.r-project.org/web/packages/factoextra/factoextra.pdf
- Package "ggplot2" <u>https://cran.r-project.org/web/packages/ggplot2/ggplot2.pdf</u>
- > Package "mclust" (mclust) https://cran.r-project.org/web/packages/mclust/mclust.pdf
- > Package "Rmixmod" (mixmodCluster) https://cran.r-project.org/web/packages/Rmixmod/Rmixmod.pdf

Comparison of packages for mixed model:

Package	Version	Clustering	Classification	Density estimation	Non-Gaussian components
mclust	5.2	1	1	1	×
Rmixmod	2.0.3	1	1	×	1
mixture	1.4	1	1	×	×
EMCluster	0.2–5	1	1	×	×
mixtools	1.0.4	1	×	1	1
bgmm	1.7	1	1	×	×
flexmix	2.3–13	1	×	×	1