A Simple Method for Modeling Change Over Time

Uri Korn Ratemaking, Product, and Modeling Seminar March 25 – 27, 2019

Changes

How do you incorporate possible changes
when loss rating large accounts?

• (Will discuss profitability studies and pricing models as well.)

• Talking about changes after adjusting for trend

• Talking about changes after adjusting for trend

How do you handle changes: large account rating?

A) Ignore

- B) By choosing the number of years to use
- C) Ad hoc/examining the data
- D) Exponential smoothing
- E) Statistical model (e.g. ARIMA, etc.)

How do you handle changes: pricing models/profitability studies?

A) Ignore

- B) By choosing the number of years to use
- C) Ad hoc/examining the data
- D) Adding year as a categorical variable in model
- E) Exponential smoothing
- F) Statistical model (e.g. ARIMA, etc.)

Because Things Change

Uri's Wohngooll

Uri's Webpage!!!

Hobbies: Computers. Football

Hobbies: Computers, Football

Hobbies: Computers, Football

Poter Fieh (Aval)

Uri's Webpage!!!

Hobbies: Computers, Football

Pets: Fish (Axel)

Hobbies: Computers, Football

Pets: Fish (Axel)

Hobbies: Computers, Football

Pets: Fish (Axel)

Remember when webpages looked like this!?

• Powerful and simple

- Non-Gaussian errors
- Log link

• Works with "short" time series

• Works with big data

- Ability to handle credibility as well
 - To incorporate the basic limit exposure cost
 - Segmentations used in profitability studies
 - Relativities used in pricing models

- Robust
 - o Handle volatile data
 - Small data changes shouldn't result in big fitted value changes

• Suitable for presentation

• Intuitive and easy to explain

• Simple to implement – We got stuff to do

• Tastes great

• Low in sodium

• No trans fats

• Free shipping

• Great selection

• A supreme cardio-vascular workout!

Loss Development Methods

- Many different methods are available for loss development:
 - o Bernheiter-Ferguson
 - Chain Ladder
 - o Cape-Cod
 - o Etc.

Loss Development Methods

- Many different methods are available for loss development:
 - → Bernheiter-Ferguson
 - Chain Ladder

 - o Etc.
- There is only one method!
Model Based Approach

• Inputs:

- Target: Chain Ladder
- Weights: Used Exposure (Exposure / LDF)
- If credibility/smoothing is applied to the changes, can result in BF or CL (or a credibility weighting of the two)
- Makes easier to analyze

Possible Solutions

- Generalized Cape Cod (S. Gluck 1997)
 - Uses exponential smoothing to handle changes
 - Performs a BF method, selecting the a priori LR for each year using locally smoothed weights
 - Little guidance for selecting the smoothing parameter
 - Doesn't handle credibility weighting by segment
- This method separates out the development from the estimation of changes!

Possible Solutions

Add year as a variable to the model (with credibility)

Year

- Poor performance
- Non-intuitive

Possible Solutions

• ARIMAs

- o Robust time series method
- Commonly used for forecasting

Possible Solutions

• ARIMAs

- o Robust time series method
- Commonly used for forecasting
- Behavior with "short" time series?
- o Gaussian errors
- o Complex and non-intuitive
- o No credibility

Additive Models (Splines)

- Often show high trends at ends, that may not exist
- Very sensitive to data changes

State Space Models

- More simple and intuitive than ARIMAS
- Powerful, intuitive time series approach
- More modern time series approach
- No need to worry about stationarity, ACF plots, etc.

State Space Models!

The way of the future!

Trend (Drift) SSM

$Y_t = X_t + e_t$

$X_t = X_{t-1} + u$

- 'e' is an error term that is minimized
- 'u' is the trend/drift

Random Walk SSM

$Y_t = X_t + e_t$

$X_t = X_{t-1} + \mathbf{r}_t$

- 'e' and 'r' are error terms that are minimized
- Complement of credibility for each point is the <u>fitted</u> value of the previous point

Random Walk SSM

 Ratio of SD(e)/SD(r) determines the amount of smoothness/adapting to the data

SSM Fitting

- Solving for the standard deviation of 'e' can be performed via maximum likelihood
- But how do we also solve for 'r'?
 - 0 If we used maximum likelihood, the fit would adapt exactly to the data

SSM Fitting

- Bayesian
 - o Uses MCMC simulations
 - Complex
 - Does not scale well
 - Not suitable for presentation

Bayesian Random Walk

Year

SSM Fitting

- Kalman Filter
 - Uses look-ahead errors to solve for 'r'
 - Complicated formulas
 - Gaussian errors
 - Not robust for "short" time series

Penalized Regression

- Penalizes coefficients the more they deviate from zero – thus shrinking everything back towards the overall mean (similar to Mixed Models)
- K-fold cross validation used to determine penalty value
- Robust!
- Not normally used for time series

K-Fold Cross Validation

Run 1	Run 2	Run 3	Run 4	Run 5
1	1	1	1	1
2	2	2	2	2
3	3	3	3	3
4	4	4	4	4
5	5	5	5	5

What is the mean?

What is the Variance?

What about now?

Intermission!

Proposed Approach

• Dummy encodings:

	2014	2015	2016
2013	0	0	0
2014	1	0	0
2015	0	1	0
2016	0	0	1

Proposed Approach

• Random walk dummy encodings:

	2014	2015	2016
2013	0	0	0
2014	1	0	0
2015	1	1	0
2016	1	1	1

- These equations will be equivalent to a random walk SSM (if some form of credibility is applied)
- (R allows the ability to change encodings "contrasts")

• Ridge

- Penalty based on the square of the coefficient values
- Equivalent to a normal prior (same as used in Mixed Models)

• Ridge

- Penalty based on the square of the coefficient values
- Equivalent to a normal prior (same as used in Mixed Models)

Lasso

- Penalty based on the absolute value of the coefficient values
- Also performs variable selection
- Does not work well with correlated predictors

• Ridge

- Penalty based on the square of the coefficient values
- Equivalent to a normal prior (same as used in Mixed Models)

Lasso

- Penalty based on the absolute value of the coefficient values
- Also performs variable selection
- Does not work well with correlated predictors

• Elastic Net

- Weighted average of ridge and lasso penalties
- Best of both worlds performs variable selection and works well with correlated predictors

Year

Large Changes

Year

Come on, a little change can be good. Don't be square.

Proposed Approach

- Elastic Net Regression
- **Response:** Chain ladder loss ratios/costs
- Weights: Used premiums/exposures

- Changes are determined scientifically and robustly
- Will give less weight to greener years
- Separates out loss development and estimation of changes
- Credibility Weighting between CL and BF

Multiple Segmentations

- Handle with interaction:
- Formula: Year + Segment + Segment:Year

Multiple Segmentations

- Solution is to set the mean of the encodings to zero
- This way the net effect of the random walk is zero, and so the segment coefficient represents the average
 values of the segments

Large Account Pricing

- Formula: Account + Account:Year (No intercept)
- Offset: Basic Limit Exposure Cost
- Determine credibility parameter(s) at the portfolio level
- Then fit the model to the account, using the selected credibility parameter
- Handles the basic limit credibility as well as changes!

Minor Technical Note

- If using the R package glmnet:
 - Score = <u>Average</u> Loglik + (Lambda $\times \sum P^2$)
 - N x Score = Total Loglik + (N × Lambda × $\sum P^2$)
 - When refitting on account data (or anything with a different number of rows), use:
 - Adjusted Lambda = Lambda x N / new N
Profitability Studies/ Pricing Models

- Profitability studies
 - Cross validation allows it to work well with "short" time series
 - Credibility for segmentations
 - Segment + Year + Segment:Year
- Pricing Models
 - Regression framework with credibility
 - Scales well to very large datasets

Profitability Study Example

Segment: 2, Subsegment: 3

Segment: 2, Subsegment: 4

Segment: 3, Subsegment: 5

Segment: 3, Subsegment: 6

Profitability Study Example

Ę,

9

9.9

2

Ľ

Segment: 2, Subsegment: 3

Segment: 3, Subsegment: 5

Segment: 3, Subsegment: 6

Year

6

8

Segment: 2, Subsegment: 4

10

More Stuff!

External Data

- Use the offset (and remove the intercept) this will be used as the complement of credibility
- If the external data only contains expected changes, keep the intercept
 - This will allow the overall level to change (without penalty)

Initial GPS Estimate

Initial GPS Estimate + Approximate Speed/Direction

Initial GPS Estimate

Initial GPS Estimate

Hacker

Hacker

Random Walk with Drift

- The random walk assumes that the complement of credibility is the previous fitted value
- Adding a drift (or trend) parameter makes the complement of credibility the previous point plus the trend
- (See standardization in paper)

Changing Trend

	2014	2015	2016
2013	0	0	0
2014	1	0	0
2015	2	1	0
2016	3	2	1

o (But make columns sum to zero if used with interactions)

Momentum/Mean Reversion (Extra Credit!)

$$Y_t = X_t + e_t$$

$$X_t = X_{t-1} + u_t$$

$$\mathbf{u}_{t} = \mathbf{a}\mathbf{u}_{t-1} + \mathbf{r}_{t}$$

- If a = 1, changing trend model
- If a = 0, random walk model

Momentum/Mean Reversion

- Changing trend with 75% mean reversion
- Or random walk with 25% momentum

	2014	2015	2016
2013	0	0	0
2014	1	0	0
2015	<mark>1 + 0.25</mark>	1	0
2016	$\frac{1+0.25+}{0.25^2}$	<mark>1 + 0.25</mark>	1

Momentum/Mean Reversion

Year

Don't Ignore Change!

Conclusion

- Pricing/profitability forecasts require a robust, statistical method
- A random walk is a simple and intuitive way to forecast
- Using the proposed method, random walks can be incorporated into penalized regression models with credibility and forecast capabilities
- The random walk works well with the elastic net penalty, and its results are well suitable for interpretation
- For more details, see https://www.casact.org/pubs/forum/18spforumv2/06_Korn.pdf