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Changes 
 

• How do you incorporate possible changes 

when loss rating large accounts? 
 

 

• (Will discuss profitability studies and pricing 

models as well.) 



Change? 
• Talking about changes after adjusting for trend 



Change? 
• Talking about changes after adjusting for trend 

 



How do you handle changes: 
large account rating? 

A) Ignore 

B) By choosing the number of years to use 

C) Ad hoc/examining the data 

D) Exponential smoothing 

E) Statistical model (e.g. ARIMA, etc.) 



How do you handle changes: 

pricing models/profitability studies? 

A) Ignore 

B) By choosing the number of years to use 

C) Ad hoc/examining the data 

D) Adding year as a categorical variable in model 

E) Exponential smoothing 

F) Statistical model (e.g. ARIMA, etc.) 



Because Things Change 
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Remember when webpages looked 

like this!? 



What we need 
• Powerful and simple 



What we need 
• Non-Gaussian errors 

• Log link 



What we need 
• Works with “short” time series 



What we need 
• Works with big data 



What we need 
• Ability to handle credibility as well 

o To incorporate the basic limit exposure cost 

o Segmentations used in profitability studies 

o Relativities used in pricing models 

 



What we need 
• Robust 

o Handle volatile data 

o Small data changes shouldn’t result in big fitted value changes 



What we need 
• Suitable for presentation 



What we need 
• Intuitive and easy to explain 



What we need 
• Simple to implement – We got stuff to do 



What we need 
• Tastes great 



What we need 
• Low in sodium 



What we need 
• No trans fats 



What we need 
• Free shipping 



What we need 
• Great selection 



What we need 
• A supreme cardio-vascular workout! 



Loss Development 
Methods 

• Many different methods are available for loss 

development: 
o Bernheiter-Ferguson 

o Chain Ladder 

o Cape-Cod 

o Etc. 

 



Loss Development 
Methods 

• Many different methods are available for loss 

development: 
o Bernheiter-Ferguson 

o Chain Ladder 

o Cape-Cod 

o Etc. 

 

• There is only one method! 

 



Model Based Approach 
• Inputs: 

o Target:  Chain Ladder 

o Weights: Used Exposure (Exposure / LDF) 

 

• If credibility/smoothing is applied to the changes, 

can result in BF or CL (or a credibility weighting of 

the two) 

 

• Makes easier to analyze 

 



Possible Solutions 
• Generalized Cape Cod (S. Gluck 1997) 

o Uses exponential smoothing to handle changes 

o Performs a BF method, selecting the a priori LR for each year using locally 

smoothed weights 

 
o Little guidance for selecting the smoothing parameter 

o Doesn’t handle credibility weighting by segment 

 

• This method separates out the development from 

the estimation of changes! 

 



Possible Solutions 
• Add year as a variable to the model (with 

credibility) 



 

 

 

 

 

 

 

 

 
• Poor performance 

• Non-intuitive 
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Possible Solutions 
• ARIMAs 

o Robust time series method 

o Commonly used for forecasting 

 



Possible Solutions 
• ARIMAs 

o Robust time series method 

o Commonly used for forecasting 

o Behavior with ”short” time series? 

o Gaussian errors 

o Complex and non-intuitive 

o No credibility 

 

 

 



Additive Models (Splines) 

• Often show high trends at ends, that may not exist 

• Very sensitive to data changes 

 



State Space Models 
• More simple and intuitive than ARIMAS 

 

• Powerful, intuitive time series approach 

 

• More modern time series approach 

 

• No need to worry about stationarity, ACF plots, etc. 

 

 

 

 



 

State Space Models! 

 

 

The way of the future! 



Trend (Drift) SSM 

• ‘e’ is an error term that is minimized 

• ‘u’ is the trend/drift  

Yt  = Xt  + et  

 

Xt  = Xt–1  + u  



Random Walk SSM 

Yt  = Xt  + et  

 

Xt  = Xt–1  + rt  

• ‘e’ and ‘r’ are error terms that are minimized 

• Complement of  credibility for each point is the fitted value of  

the previous point 



Random Walk SSM 

• Ratio of SD(e)/SD(r) determines the amount of 

smoothness/adapting to the data 
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SSM Fitting 
• Solving for the standard deviation of  ‘e’ can be performed via 

maximum likelihood 

 

• But how do we also solve for ’r’? 

o If  we used maximum likelihood, the fit would adapt exactly to the data 



SSM Fitting 
• Bayesian 

o Uses MCMC simulations 

o Complex 

o Does not scale well 

o Not suitable for presentation 

 



Bayesian Random Walk 



SSM Fitting 
• Kalman Filter 

o Uses look-ahead errors to solve for ‘r’ 

o Complicated formulas 

o Gaussian errors 

o Not robust for ”short” time series 



Penalized Regression 
• Penalizes coefficients the more they deviate from 

zero – thus shrinking everything back towards the 

overall mean (similar to Mixed Models) 

 

• K-fold cross validation used to determine penalty 

value 

 

• Robust! 

 

• Not normally used for time series 

 



K-Fold Cross Validation 

Run 1 Run 2 Run 3 Run 4 Run 5

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

5 5 5 5 5



What is the mean? 
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What is the Variance? 
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What about now? 



Intermission! 



Proposed Approach 
• Dummy encodings: 

2014  2015  2016  

2013  0  0  0  

2014  1  0  0  

2015  0  1  0  

2016  0  0  1  



Proposed Approach 
• Random walk dummy encodings: 

 

 

 

 

 

 

 

• These equations will be equivalent to a random 
walk SSM (if some form of credibility is applied) 

• (R allows the ability to change encodings – 
“contrasts”) 

2014  2015  2016  

2013  0  0  0  

2014  1  0  0  

2015  1  1  0  

2016  1  1  1  



Types of Penalized 
Regression 

• Ridge 
o Penalty based on the square of the coefficient values 

o Equivalent to a normal prior (same as used in Mixed Models) 
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• Lasso 
o Penalty based on the absolute value of the coefficient values 

o Also performs variable selection 

o Does not work well with correlated predictors 



Types of Penalized 
Regression 

• Ridge 
o Penalty based on the square of the coefficient values 

o Equivalent to a normal prior (same as used in Mixed Models) 

 

• Lasso 
o Penalty based on the absolute value of the coefficient values 

o Also performs variable selection 

o Does not work well with correlated predictors 

 

• Elastic Net 
o Weighted average of ridge and lasso penalties 

o Best of both worlds – performs variable selection and works well with 

correlated predictors 



Types of Penalized 
Regression 



Large Changes 



Come on, a little change 

can be good. 

Don’t be square. 



Proposed Approach 
 

• Elastic Net Regression 

• Response:  Chain ladder loss ratios/costs 

• Weights:  Used premiums/exposures 

 

 

 

• Changes are determined scientifically and robustly 

• Will give less weight to greener years 

• Separates out loss development and estimation of changes 

• Credibility Weighting between CL and BF 
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Multiple Segmentations 
 

• Handle with interaction: 

 

• Formula: Year + Segment + Segment:Year 



Multiple Segmentations 
 

 

 

 

 

 

 

 

 

 

• Solution is to set the mean of the encodings to zero 

• This way the net effect of the random walk is zero, and 
so the segment coefficient represents the average 
values of the segments 



Large Account Pricing 
 

• Formula: Account + Account:Year  (No intercept) 

• Offset: Basic Limit Exposure Cost 

 

• Determine credibility parameter(s) at the portfolio level 

 

• Then fit the model to the account, using the selected 

credibility parameter 

 

• Handles the basic limit credibility as well as changes! 

 



Minor Technical Note 
• If using the R package glmnet: 

 

o Score = Average Loglik + (𝐿𝑎𝑚𝑏𝑑𝑎 ×   𝑃2) 

o N x Score = Total Loglik + (N × 𝐿𝑎𝑚𝑏𝑑𝑎 ×   𝑃2) 

 

o When refitting on account data (or anything with a 

different number of rows), use: 

• Adjusted Lambda = Lambda x N / new N 



Profitability Studies/ 
Pricing Models 

 

• Profitability studies 
o Cross validation allows it to work well with “short” time series 

o Credibility for segmentations 

o Segment + Year + Segment:Year 

 

• Pricing Models 
o Regression framework with credibility 

o Scales well to very large datasets 



Profitability Study 
Example 



Profitability Study 
Example 



 

 

 

More Stuff! 



External Data 
• Use the offset (and remove the intercept) – this will 

be used as the complement of credibility 

 

• If the external data only contains expected 

changes, keep the intercept 
o This will allow the overall level to change (without penalty) 
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~50 MPH 

Initial GPS Estimate 

   Approximate Speed 

New GPS Estimate 

Initial GPS Estimate + 
Approximate Speed/Direction 
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Giant 
Bacteria 
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Bacteria 
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Combined Best Estimate 
Giant 
Bacteria 

New 
GPS 
Estimate 

Latest Best Estimate + 
Approximate Speed/Direction 
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Combined Best Estimate 
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Bacteria 
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Giant 
Bacteria 

Combined Best 
Estimate 

Hacker 



Random Walk with Drift 
• The random walk assumes that the complement of 

credibility is the previous fitted value 

• Adding a drift (or trend) parameter makes the 

complement of credibility the previous point plus 

the trend 

• (See standardization in paper) 

 

 



Changing Trend 
 

 

 

 

 

 
 

 

o (But make columns sum to zero if used with interactions) 

2014  2015  2016  

2013  0  0  0  

2014  1  0  0  

2015  2  1  0  

2016  3  2  1  
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Momentum/Mean Reversion 

(Extra Credit!) 
 

 

 

 

 

 

 

 

• If a = 1, changing trend model 

• If a = 0, random walk model 

Yt  = Xt  + et  

 

Xt  = Xt–1  + ut  

 

ut  = aut–1  + rt  



Momentum/Mean Reversion 

• Changing trend with 75% mean reversion 

• Or random walk with 25% momentum 

2014  2015  2016  

2013  0  0  0  

2014  1  0  0  

2015  1 + 0.25  1  0  

2016  
1 + 0.25 + 

0.252  
1 + 0.25  1  



Momentum/Mean Reversion 



Don’t Ignore Change! 



Conclusion 
• Pricing/profitability forecasts require a robust, statistical 

method 

 

•  A random walk is a simple and intuitive way to forecast 

 

• Using the proposed method, random walks can be 
incorporated into penalized regression models with 
credibility and forecast capabilities 

 

• The random walk works well with the elastic net penalty, 
and its results are well suitable for interpretation 

 

 
• For more details, see 

https://www.casact.org/pubs/forum/18spforumv2/06_Korn.pdf 


