
# PROPERTY AND CASUALTY EXPOSURE RATING

Kevin Hilferty Guy Carpenter August 12, 2013

# What <u>IS</u> Exposure Rating??

- Pure Exposure Rating Used by Primary Companies
  - Commonly called "Manual Rating"

- Reinsurance Exposure Rating
  - Allocation of Premium/Loss to Layer through use of some generated curve/equation (model of loss)
    - Based on Industry
    - Based on Company Data



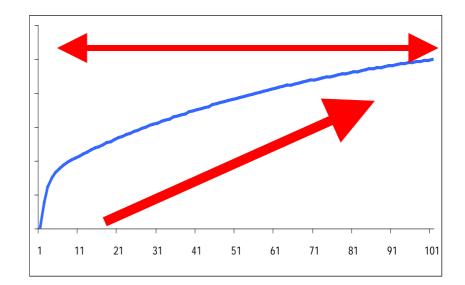
# Pure Exposure Rating

• Premium = Rate \* Exposure

EXAMPLE Rate = \$0.01 Exposure = Building Value = \$100,000

Premium = Rate \* Exposure = \$0.01 \* \$100,000 = \$1,000

Where does the rate come from?


### Pure Exposure Rating Manual Rating of Insurance Policies

- Determined by
  - Rating agencies: ISO, NCCI
    - Many years ago, provided actual rates
    - Now provide advisory loss costs, which companies then load for expenses and risk / profit margin
  - Based on companies' reported data

• Generally subject to regulatory approval

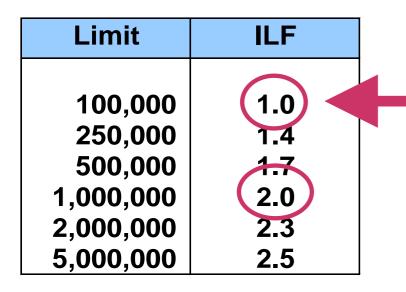
### Pure Exposure Rating Increased Limits Factors (ILF's)

- Rating Agencies generally designate a "Basic Limit" size
  - E.g. \$100K, \$1M
  - "Basic Limits" premium is the manual rate
- For higher Limits, **Increased Limits Factors** determine price
  - May be promulgated by a rating agency or determined from company data
  - ILF scale is equivalent to a size of loss (severity) distribution
- Logical tests for ILF tables
  - First derivative  $\geq$  0 (non-decreasing)
  - Second derivative  $\leq 0$  (increase at a decreasing rate)



### Pure Exposure Rating Increased Limits Factors (ILF)

# So these are the terms we'll be using when we talk about Pure Exposure Rating


Pure Exposure Rating Increased Limits Factors (ILF)

> Premium = Base Rate \* ILF \* Exposure Base Rate: Rate at Basic Limit ILF:Increased Limit Factor What you multiply Basic Limits premium by, in order to get the premium at the desired limit Exposure: Varies by Line

### Pure Exposure Rating Typical Exposure Bases

Auto: Number & Type of Vehicles
Workers Comp: Capped Payroll
GL: Sales, Revenue / Sq. Ft., # Units
E&O: Varies – Usually # of Professionals
D&O: Varies – Market Cap, ROL

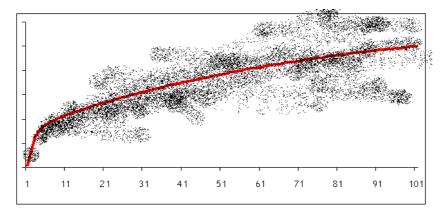
### Pure Exposure Rating Increased Limits Factors (ILF)



### What is the Basic Limit size?

If base rate = \$50, what rate will policyholder be charged for a limit of:

100K? 50 \* 1.0 = 5050 \* 2.0 = 100


1M?

### ILF Calculations Lawyers Professional Liability Example

- Insurance Company Rating Plan
  - Exposure base = # of attorneys
  - Basic Limit = \$100.000
  - Base Rate = \$1,000 per attorney
  - \$1,000,000 ILF is 2.00
- How much does a \$1M policy cost for a firm with 3 atorneys?
  - Premium = Base Rate \* ILF \* Exposure
    - Premium = Base Rate \* ILF \* Exposure = \$1000
      \* 2.00 \* 3
      - = \$6000

### **Reinsurance Exposure Rating**

- Allocation of Premium/Loss to Layer through use of some generated curve/equation (model of loss)
  - Based on Industry
  - Based on Company Data



$$CDF\_ME(x;\overline{\mu},\overline{w}) = \sum_{i=1}^{8} w_i \left(1 - e^{-\frac{x}{\mu_i}}\right)$$

# Why Do We Exposure Rate?

- Exposure Rating can be used to:
  - Estimate Mean (Expected) Loss (for any layer or limit)
  - Estimate Reinsurance Price
  - Create MetaRisk Input file

So Can Experience Rating for that Matter!

# WHEN Do We Exposure Rate?

### When company experience:

- Is approximately like Industry
  - Or another company
- Is insufficient
  - Low volume
  - New LOB
- Is non-credible
  - Mix changes
  - Changing profiles



# When DON'T We Exposure Rate?

### When company:

- Experience is <u>not</u> like industry
- Info is not available
  - Company doesn't provide necessary info
  - No industry data is available

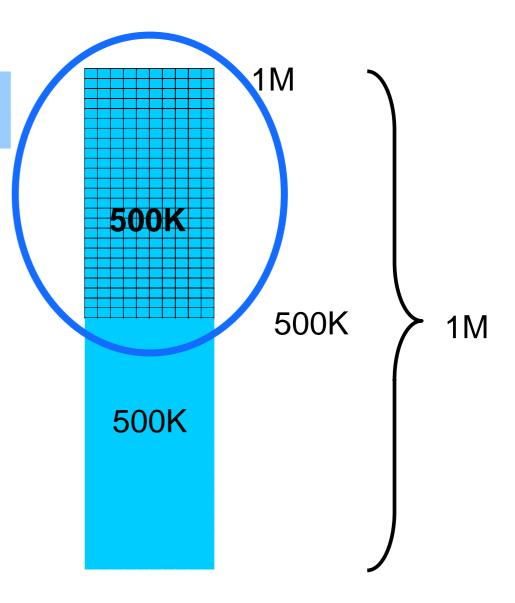


# Exposure Rating by LOB

Although the ideas behind exposure rating never change, the actual mechanics of it differ by LOB

- LIABILITY uses Increased Limits Factors (ILFs)
- PROPERTY uses:
  - First Loss Scales (FLSs), or
  - Size-of-Loss Curves (PSOLD)
- WORKER'S COMP uses Excess Loss Factors (ELFs)

# LIABILITY Exposure Rating


- Auto Liability
- Prem/Ops
- Products
- E&O
- Umbrella

### ILF Calculations Example

Policy Limit = 1M Total Policy Premium = \$1000

Goal: estimate premium for a 500 x 500 facultative certificate on a 1M policy

| Limit     | ILF |
|-----------|-----|
| 100,000   | 1.0 |
| 250,000   | 1.9 |
| 500,000   | 2.9 |
| 750,000   | 3.6 |
| 1,000,000 | 4.1 |
| 1,250,000 | 4.5 |
| 2,000,000 | 5.4 |

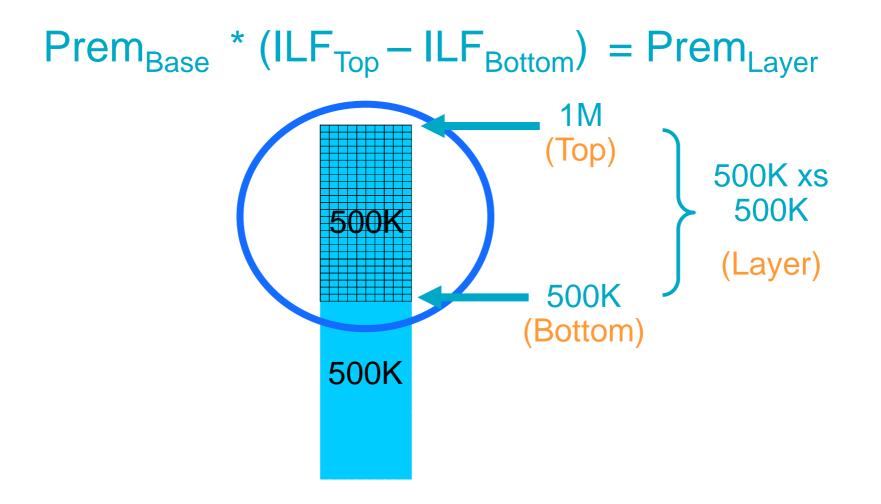


# **ILF Calculations**

Example

Policy Limit = 1M Total Policy Premium = \$1,000

Goal: estimate premium for a 500 x 500 facultative certificate on a 1M policy


| Limit     | ILF |  |  |
|-----------|-----|--|--|
| 100,000   | 1.0 |  |  |
| 250,000   | 1.9 |  |  |
| 500,000   | 2.9 |  |  |
| 750,000   | 3.6 |  |  |
| 1,000,000 | 4.1 |  |  |
| 1,250,000 | 4.5 |  |  |
| 2,000,000 | 5.4 |  |  |

Step 1: Calculate  $Prem_{Base}$   $Prem_{Base} * ILF_{1M} = Prem_{1M}$   $Prem_{Base} * 4.1 = 1000$   $Prem_{Base} = 1000 / 4.1$  $Prem_{Base} = 244$ 

| Step 2: Calculate Prem <sub>500K</sub>   |       |       |  |  |
|------------------------------------------|-------|-------|--|--|
| $Prem_{Base} * ILF_{500K} = Prem_{500K}$ |       |       |  |  |
| 244                                      | * 2.9 | = 708 |  |  |

Step 3: Calculate  $Prem_{layer}$  $Prem_{1M}$  -  $Prem_{500K}$ =  $Prem_{layer}$ 1000- 708= 292

### ILF Calculations Allocation Shortcut Formula



### ILF Calculations Example – Shortcut

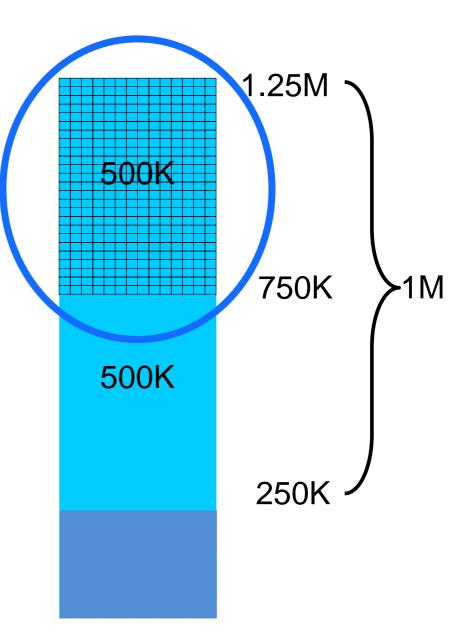
Policy Limit = 1M

Policy Prem = \$1000

Goal: estimate premium for a 500 x 500 facultative certificate on a 1M policy

| Limit     | ILF |
|-----------|-----|
| 100,000   | 1.0 |
| 250,000   | 1.9 |
| 500,000   | 2.9 |
| 750,000   | 3.6 |
| 1,000,000 | 4.1 |
| 1,250,000 | 4.5 |
| 2,000,000 | 5.4 |

| Step 1: Calculate Prem <sub>Base</sub>   |               |  |  |  |
|------------------------------------------|---------------|--|--|--|
| Prem <sub>Base</sub> * ILF <sub>1M</sub> | $= Prem_{1M}$ |  |  |  |
| Prem <sub>Base</sub> * 4.1               | = 1000        |  |  |  |
| <b>Prem</b> <sub>Base</sub>              | = 1000 / 4.1  |  |  |  |
| Prem <sub>Base</sub>                     | = 244         |  |  |  |


Step 2: Calculate 
$$Prem_{layer}$$
  
 $Prem_{Base} * (ILF_{1M} - ILF_{500K}) = Prem_{layer}$   
244 \* (4.1 - 2.9 ) = 292

### ILF Calculations Example 2

```
Policy Limit = 1M
SIR = 250K
Policy Prem = 1000
```

# What is the premium for 500K x 500K?

| Limit     | ILF |
|-----------|-----|
| 100,000   | 1.0 |
| 250,000   | 1.9 |
| 500,000   | 2.9 |
| 750,000   | 3.6 |
| 1,000,000 | 4.1 |
| 1,250,000 | 4.5 |
| 2,000,000 | 5.4 |



# **ILF Calculations**

Example 2

Policy Limit = 1M SIR = 250K Policy Prem = 1000

What is the premium for 500K x 500K?

| Limit     | ILF |
|-----------|-----|
| 100,000   | 1.0 |
| 250,000   | 1.9 |
| 500,000   | 2.9 |
| 750,000   | 3.6 |
| 1,000,000 | 4.1 |
| 1,250,000 | 4.5 |
| 2,000,000 | 5.4 |

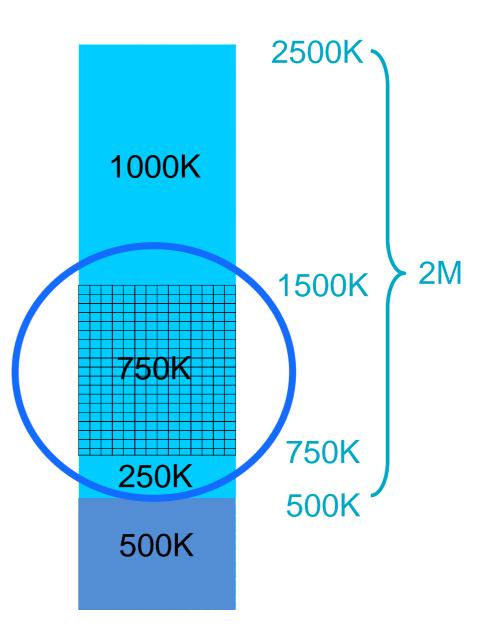
Step 1: Calculate  $Prem_{Base}$   $Prem_{Base} * (ILF_{1.25M} - ILF_{250K}) = Prem_{policy}$ Note: Policy premium already a layer premium  $Prem_{Base} * (4.5 - 1.9) = 1000$   $Prem_{Base} = 1000 \div (4.5 - 1.9)$  $Prem_{Base} = 385$ 

Step 2: Calculate  $Prem_{layer}$   $Prem_{Base} * (ILF_{1.25M} - ILF_{750K}) = Prem_{layer}$ 385 \* (4.5 - 3.6) = 47

# Look how much difference the SIR information made!

### For a \$1M limit and total premium = \$1000 The premium for 500K x 500K is:

### \$292 with no SIR <u>\$347</u> if SIR is \$250K


In this example, if we didn't know about the SIR, the cedant would be undercharged by \$55 – the correct price is 20% higher than the no-SIR price. In the real world, the actual difference depends on the nature of the business and the limit / SIR profile. That's why we ask for deductible / SIR information!

### ILF Calculations Example 3

Policy Limit = 2M SIR = 500K Policy Prem = \$1500

# What is the premium for 750K x 250K?

| Limit     | ILF |
|-----------|-----|
| 500,000   | 0.7 |
| 750,000   | 0.9 |
| 1,000,000 | 1.0 |
| 1,500,000 | 1.2 |
| 2,000,000 | 1.3 |
| 2,500,000 | 1.4 |
| 3,000,000 | 1.5 |
| 5,000,000 | 1.7 |



# ILF Calculations Cessions Example 3

Policy Limit = 2M SIR = 500K Policy Prem = \$1500

What is the premium for 750K x 250K?

| Limit     | ILF |
|-----------|-----|
| 500,000   | 0.7 |
| 750,000   | 0.9 |
| 1,000,000 | 1.0 |
| 1,500,000 | 1.2 |
| 2,000,000 | 1.3 |
| 2,500,000 | 1.4 |
| 3,000,000 | 1.5 |
| 5,000,000 | 1.7 |

Step 1: Calculate  $Prem_{Base}$   $Prem_{Base} * (ILF_{2.5M} - ILF_{500K}) = Prem_{policy}$ Note: Policy premium already a layer premium  $Prem_{Base} * (1.4 - 0.7) = 1500$   $Prem_{Base} = 1500 \div (1.4 - 0.7)$  $Prem_{Base} = 2143$ 

Step 2: Calculate  $Prem_{layer}$   $Prem_{Base} * (ILF_{1.5M} - ILF_{750K}) = Prem_{layer}$ 2143 \* (1.2 - 0.9) = 643

# **General ILF Calculations**

 $Prem_{Base} * (ILF_{Top} - ILF_{Bottom}) = Prem_{Layer}$ 

- Be careful to get the right "Top" and "Bottom" for your layer
  - Drawing a picture is very useful
- Effect of Deductible or SIR
  - Direct policy premium is already a layer premium
  - But ILF table operates from ground up
  - $ILF_{Bottom}$  for the layer is  $ILF_{Ded/SIR+Att Pt}$  instead of  $ILF_{Att Pt}$
- Top of layer to be priced may not equal top of policy limit
  - Consider whether top of the layer is within the policy

# Liability Exposure Rating

- Data Needed From Company
  - Premium and Pricing History
  - Ground-up Loss or Loss Ratio
  - Limit/Deductible Profiles
- Other Data Used
  - Increased Limit Factors

• Need all data by LOB and maybe State

#### Liability Exposure Rating

#### • Need all data by LOB and maybe State

|               | PREM/OPS |         |         |               | COMMERCIAL             | AUTO               |            | PERSONAL AL            |
|---------------|----------|---------|---------|---------------|------------------------|--------------------|------------|------------------------|
| MultiState    | Table 1  | Table 2 | Table 3 | STATE GROUP 1 | L & M                  | STATE GROUP 5      | L & M      | Tort States            |
| Calif         | Table 1  | Table 2 | Table 3 | STATE GROUP 1 | HEAVY                  | STATE GROUP 5      | HEAVY      | CO, DE, KY, MN, ND     |
| L             | Table 1  | Table 2 | Table 3 | STATE GROUP 1 | X-HEAVY                | STATE GROUP 5      | X-HEAVY    | FL                     |
| GA            | Table 1  | Table 2 | Table 3 | STATE GROUP 1 | ZONE RATED             | STATE GROUP 5      | ZONE RATED | KS, UT                 |
| L             | Table 1  | Table 2 | Table 3 | STATE GROUP 1 | ALL OTHER              | STATE GROUP 5      | ALL OTHER  | MI, NY                 |
| N             | Table 1  | Table 2 | Table 3 | STATE GROUP 2 | L & M                  | STATE GROUP 6      | L & M      | Multi-State            |
| ЛА            | Table 1  | Table 2 | Table 3 | STATE GROUP 2 | HEAVY                  | STATE GROUP 6      | HEAVY      |                        |
| Л             | Table 1  | Table 2 | Table 3 | STATE GROUP 2 | X-HEAVY                | STATE GROUP 6      | X-HEAVY    |                        |
| n             | Table 1  | Table 2 | Table 3 | STATE GROUP 2 | ZONE RATED             | STATE GROUP 6      | ZONE RATED |                        |
| IY            | Table 1  | Table 2 | Table 3 | STATE GROUP 2 | ALL OTHER              | STATE GROUP 6      | ALL OTHER  |                        |
| IC            | Table 1  | Table 2 | Table 3 | STATE GROUP 3 | L & M                  | STATE GROUP 7 (CA) | L & M      | MEDICAL/PROFES         |
| Н             | Table 1  | Table 2 | Table 3 | STATE GROUP 3 | HEAVY                  | STATE GROUP 7 (CA) | HEAVY      | HOSPITALS LIABILITY GR |
| Α             | Table 1  | Table 2 | Table 3 | STATE GROUP 3 | X-HEAVY                | STATE GROUP 7 (CA) | X-HEAVY    | HOSPITALS LIABILITY GR |
| X             | Table 1  | Table 2 | Table 3 | STATE GROUP 3 | ZONE RATED             | STATE GROUP 7 (CA) | ZONE RATED | HOSP LIABILITY MULTIST |
| Ά             | Table 1  | Table 2 | Table 3 | STATE GROUP 3 | ALL OTHER              | STATE GROUP 7 (CA) | ALL OTHER  | PHYSICIANS LIABILITY G |
| VI            | Table 1  | Table 2 | Table 3 | STATE GROUP 4 | L & M                  | STATE GROUP 8 (NY) | L & M      | PHYSICIANS LIABILITY G |
| Group_A       | Table 1  | Table 2 | Table 3 | STATE GROUP 4 | HEAVY                  | STATE GROUP 8 (NY) | HEAVY      | PHYSICIANS LIABILITY G |
| Group_B       | Table 1  | Table 2 | Table 3 | STATE GROUP 4 | X-HEAVY                | STATE GROUP 8 (NY) | X-HEAVY    | PHYS LIABILITY MULTIST |
| Group_C       | Table 1  | Table 2 | Table 3 | STATE GROUP 4 | ZONE RATED             | STATE GROUP 8 (NY) | ZONE RATED | SURGEONS LIABILITY GR  |
| Group A prime | Table 1  | Table 2 | Table 3 | STATE GROUP 4 | ALL OTHER              | STATE GROUP 8 (NY) | ALL OTHER  | SURGEONS LIABILITY GR  |
| Group B prime | Table 1  | Table 2 | Table 3 |               |                        |                    |            | SURGEONS LIABILITY GR  |
| Group C prime | Table 1  | Table 2 | Table 3 |               | STATE GROUP MULTISTATE | L & M              |            | SURG LIABILITY MULTIST |
|               |          |         |         |               | STATE GROUP MULTISTATE | HEAVY              |            | DENTISTS LIABILITY     |
|               |          |         |         |               | STATE GROUP MULTISTATE | X-HEAVY            |            | NURSING HOMES LIABILI  |
|               |          |         |         |               | STATE GROUP MULTISTATE | ZONE RATED         |            | MISC MEDICAL LIABILITY |
|               |          |         |         |               | STATE GROUP MULTISTATE | ALL OTHER          |            |                        |

|            | PRODUCTS |         |         |
|------------|----------|---------|---------|
| MultiState | Table A  | Table B | Table C |

# Calculating Reinsurance Rates

- Loss costs or premiums?
  - Until now we have mostly been talking about premium
- Usual assumption: ILFs are "fair"
  - i.e., same loss ratio at all limit sizes
  - Layer loss cost = (loss ratio) \* (layer premium)
- To calculate a technical reinsurance premium, loss costs must be adjusted for the reinsurer's
  - Expenses (including brokerage)
  - Investment income
  - Combined ratio requirements
  - Risk load / profit margin
- Such factors may differ between insurer and reinsurer

#### Liability Exposure Rating Using a Limit Profile

| ILF Table                                                                                                                                   | ILF Table Limit Profile                                                                              |  | rofile                                                                                                                                       |                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Policy<br><u>Limit</u><br>1,000,000<br>2,000,000<br>3,000,000<br>4,000,000<br>5,000,000<br>6,000,000<br>7,000,000<br>8,000,000<br>9,000,000 | <u>ILF</u><br>2.000<br>2.530<br>2.920<br>3.190<br>3.410<br>3.580<br>3.720<br>3.850<br>3.950<br>4.030 |  | Policy<br><u>Limit</u><br>1,000,000<br>2,000,000<br>3,000,000<br>4,000,000<br>5,000,000<br>6,000,000<br>7,000,000<br>8,000,000<br>10,000,000 | Premium<br>5,000,000<br>10,000,000<br>4,000,000<br>7,000,000<br>25,000,000<br>6,500,000<br>3,000,000<br>1,000,000 |

#### Liability Exposure Rating Using a Limit Profile

| Loss Ratio    | 60.0% |
|---------------|-------|
| Brokerage     | 10.0% |
| Rein. Expense | 5.0%  |
| Margin        | 5.0%  |

| Policy         |               |                  | Т |              |           |              |     | 1      |
|----------------|---------------|------------------|---|--------------|-----------|--------------|-----|--------|
| Limit          | Premium       | Base Rate        |   | \$4M xs \$1M | % Premium | \$5M xs \$5M | % P | remium |
| 1,000,000      | 5,000,000     | 2,500,000        | T | -            | 0.0%      | -            |     | 0.0%   |
| 2,000,000      | 10,000,000    | 3,952,569        |   | 2,094,862    | 20.9%     | -            |     | 0.0%   |
| 3,000,000      | 4,000,000     | 1,369,863        |   | 1,260,274    | 31.5%     | -            |     | 0.0%   |
| 4,000,000      | 7,000,000     | 2,194,357        |   | 2,611,285    | 37.3%     | -            |     | 0.0%   |
| 5,000,000      | 25,000,000    | 7,331,378        |   | 10,337,243   | 41.3%     | -            |     | 0.0%   |
| 6,000,000      | 6,500,000     | 1,815,642        |   | 2,560,056    | 39.4%     | 308,659      |     | 4.7%   |
| 7,000,000      | 3,000,000     | 806,452          |   | 1,137,097    | 37.9%     | 250,000      |     | 8.3%   |
| 8,000,000      | 1,000,000     | 259,740          |   | 366,234      | 36.6%     | 114,286      |     | 11.4%  |
| 10,000,000     | 10,000,000    | 2,481,390        |   | 3,498,759    | 35.0%     | 1,538,462    | (   | 15.4%  |
| Total          | 71,500,000    |                  |   | 23,865,810   | 33.4%     | 2,211,406    |     | 3.1%   |
| Loss Cost      | = Premiu      | m x Loss Ratio   | T | 14,319,486   | 20.0%     | 1,326,844    |     | 1.9%   |
| Reins. Premium | = Loss Cost / | ′ (1 - Expenses) |   | 17,899,358   | 25.0%     | 1,658,555    |     | 2.3%   |

### **Property Exposure Rating**

# **PROPERTY Exposure Rating**

- Commercial Property
- Residential Property
- Ocean Marine
- Inland Marine

**Property Rating - Terminology** 

# A bit of vocabulary

- **TIV: Total Insured Value**
- **TSI: Total Sums Insured**

# PML: Probable Maximum Loss MFL: Maximum Forseeable Loss

Shades of meaning, or a real difference?

Tied to the value of the building

Tied to the value – of the loss (this is almost always less than TIV/TSI)

### **Property Rating - Pure**

# Premium = Rate \* Insured Value

Rate: Amount you charge per \$100 of Insured Value

> Insured Value:Value of building (more or less) Sometimes called TIV or PML

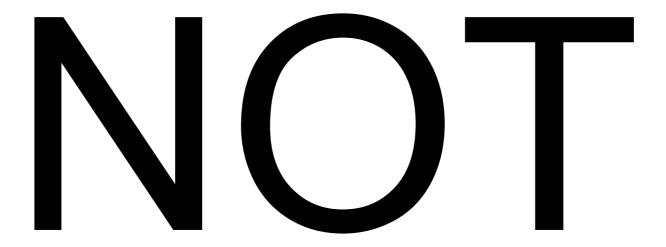
### Property Rating – Example

Building Value = \$100,000

Rate = \$0.20 per \$100 TIV

Direct Premium = 
$$\frac{$100,000}{100}$$
 x 0.20 = \$200

Direct Premium =  $\frac{200,000}{100}$  x 0.20 = \$400


Property Rating - Problem

Using a single rate for the entire exposure leaves us in a bit of a bind....

Building Value = \$1M Rate = 20 ¢ per \$100 in Value How much went for 500K x 500K ??????

Reinsurer is getting 50% of building Should reinsurer get 50% of the premium?

#### **Property Rating - Problem**



## **Property Rating - Problem**

So what are we supposed to do ???

Property isn't rated using ILFs. Why don't they???

### Property Rating – Bit o' History

## In the old days, it was believed that:

- Virtually all losses were fire losses

- Virtually all fire losses were total losses

If so, a single rate makes sense

## Property Rating – Bit o' History

- These days, it is believed that:
  - For Homeowners
    - There are lots of total fire losses
    - But there are a lot of partial losses too
  - For Commercial Property
    - There are lots of ways to have losses
    - Hardly any losses are total

# mannennennen

# In response, rating methods are changing

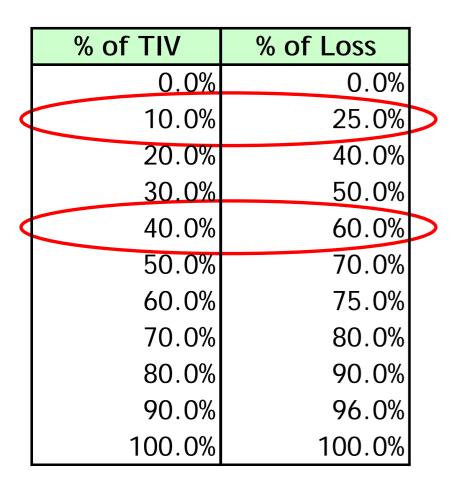
### Property Rating – Liab vs Prop

- For Liability we think in terms of dollars
   e.g. a slip & fall costs \$2000
- For Property we think in terms of % of TIV
   e.g. a HO claim is for 10% of the TIV

Traditionally, Property has used something called a *First-Loss Scale* 

- aka Lloyds Scales
- aka Salzmann Curves
- aka Ludwig Curves

First-Loss Scales give the distribution of loss as a percent of insured value (as opposed to the distribution of loss dollars)


This means for property we basically only do allocation of premium based on losses

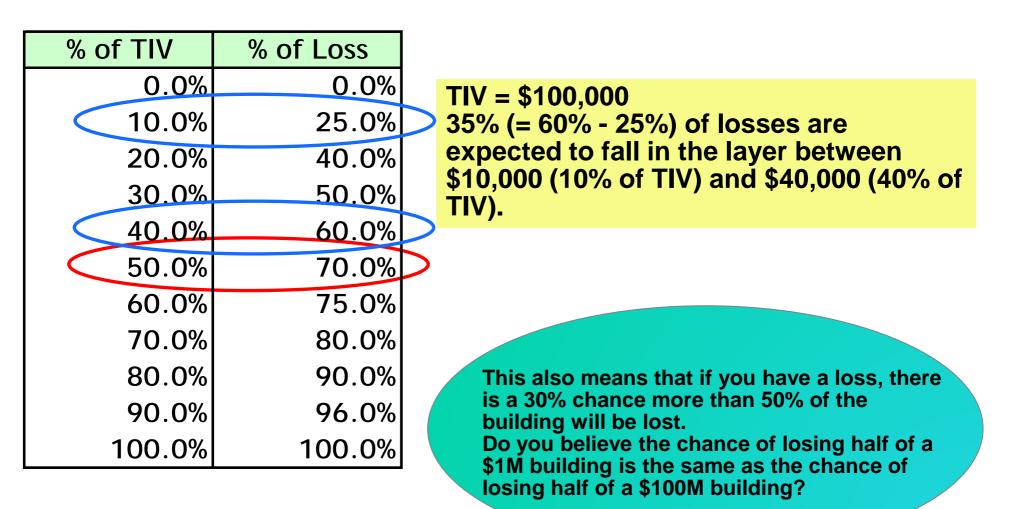


## **Examples and Exercises**

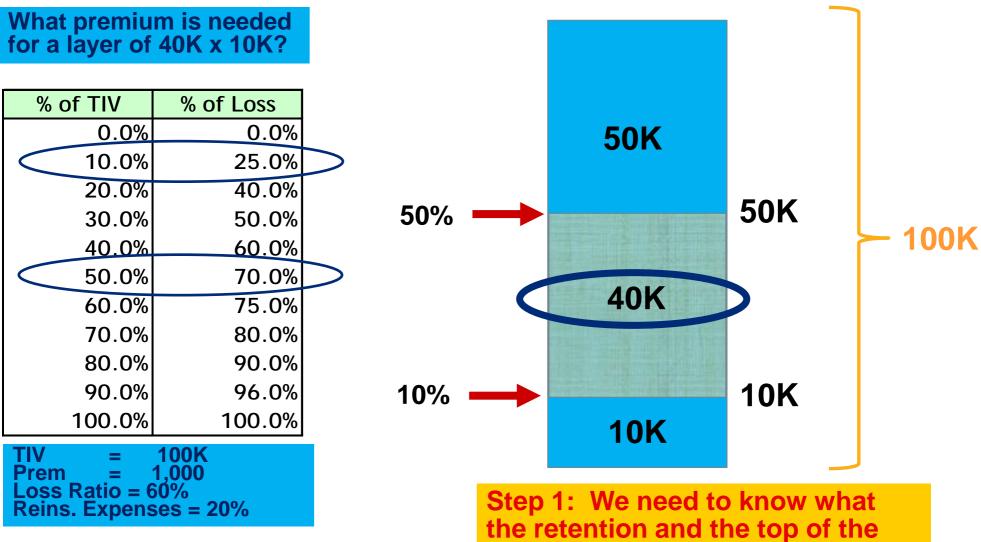


|          |           | Interpretation                |
|----------|-----------|-------------------------------|
| % of TIV | % of Loss | Interpretation:               |
| 0.0%     | 0.0%      | Layer 0-10% should see 25% of |
| 10.0%    | 25.0%     | the total losses              |
| 20.0%    | 40.0%     |                               |
| 30.0%    | 50.0%     | Layer 0-50% should see 70% of |
| 40.0%    | 60.0%     | the total losses              |
| 50.0%    | 70.0%     | >                             |
| 60.0%    | 75.0%     |                               |
| 70.0%    | 80.0%     |                               |
| 80.0%    | 90.0%     |                               |
| 90.0%    | 96.0%     |                               |
| 100.0%   | 100.0%    |                               |




#### TIV = \$100,000

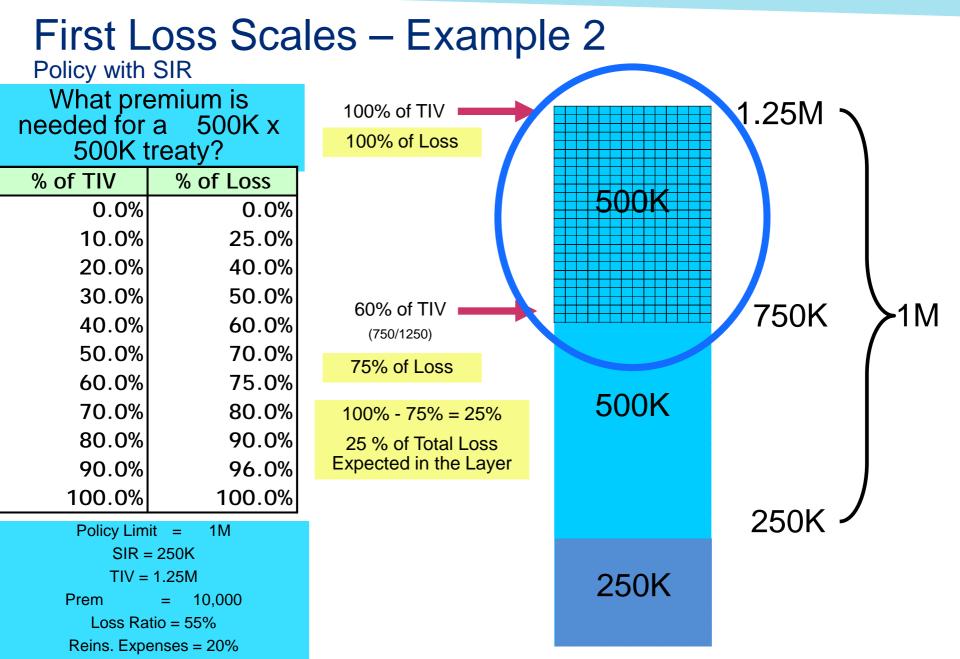
25% of losses are less than or equal to 10% of TIV. Therefore, 25% of Premium goes to pay the losses for the first 10,000 of building value.


(since 10% \* 100,000 = 10,000)

60% of the premium goes to pay the losses for the first 40,000 of building value

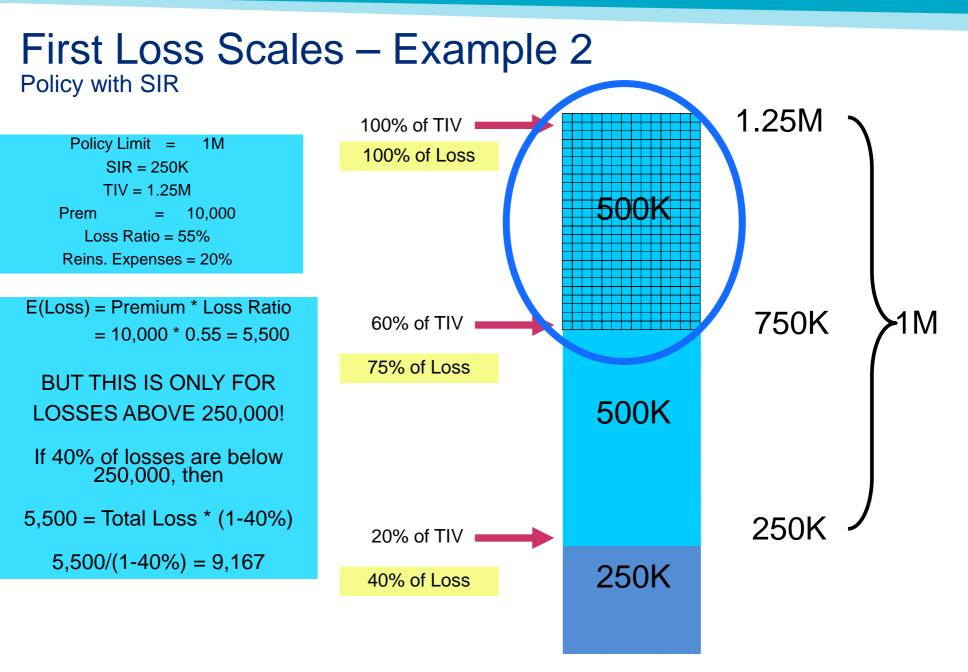
(since 40% \* 100,000 = 40,000)




#### First Loss Scales – Example



layer are as a % of TIV


#### First Loss Scales – Example

**Step 2: Calculate Expected Loss** What premium is needed for a 40K x 10K treaty? 1000 \* 60% = 600% of TIV % of Loss Step 3: Look up Ratios on Table 0.0% 0.0% 25.0% 10.0%  $10\% \rightarrow 25\%$  of loss 20.0% 40.0%  $50\% \rightarrow 70\%$  of loss 30.0% 50.0% 40.0% 60.0% Step 4: Multiply E(Loss) by Ratio Difference 70.0% 50.0% 75.0% 60.0%  $E(Loss)_{40x10} = (70\% - 25\%) * 600 = 270$ 70.0% 80.0% 80.0% 90.0% Step 5: Gross Up for Reins. Expenses 90.0% 96.0% **Reins.**  $Prem_{40\times10} = 270/(1 - 0.2) = 338$ 100.0% 100.0% Prem = 1,000Loss Ratio = 60% Reins. Expenses = 20%So insuring 40% of limit for 33.8% of premium



#### First Loss Scales – Example 2 Policy with SIR

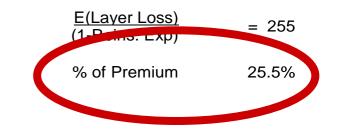
# BUT WHAT IS THE TOTAL LOSS?



## First Loss Scales – Example 2

| Policy with       | SIR                  |                                                                                                                                                      |  |  |
|-------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| What pre          | emium is             |                                                                                                                                                      |  |  |
| needed for        |                      | Calculate Expected Loss in the Layer                                                                                                                 |  |  |
| 500K t            | reaty?               |                                                                                                                                                      |  |  |
| % of TIV          | % of Loss            | 9,167 * 25% = 2,292                                                                                                                                  |  |  |
| 0.0%              | 0.0%                 |                                                                                                                                                      |  |  |
| 10.0%             | 25.0%                | Gross-up for Reinsurer Expenses                                                                                                                      |  |  |
| 20.0%             | 40.0%                | 2292 / (1 - 0.2) = 2,865                                                                                                                             |  |  |
| 30.0%             | 50.0%                |                                                                                                                                                      |  |  |
| 40.0%             | 60.0%                |                                                                                                                                                      |  |  |
| 50.0%             | 70.0%                |                                                                                                                                                      |  |  |
| 60.0% 75.0%       |                      |                                                                                                                                                      |  |  |
| 70.0%             | 80.0%                |                                                                                                                                                      |  |  |
| 80.0%             | 90.0%                |                                                                                                                                                      |  |  |
| 90.0%             | 96.0%                |                                                                                                                                                      |  |  |
| 100.0%            | 100.0%               |                                                                                                                                                      |  |  |
| Policy Limit = 1M |                      | $\mathbf{C}_{\mathbf{r}}$ is surface $400\%$ of list the $\mathbf{C}_{\mathbf{r}}$ $\mathbf{C}_{\mathbf{r}}$ is surface to $\mathbf{C}_{\mathbf{r}}$ |  |  |
| SIR =             | 250K                 | So insuring 40% of limit for 28.7% of premium                                                                                                        |  |  |
| TIV = 1.25M       |                      |                                                                                                                                                      |  |  |
| Prem              | = 10,000<br>io = 55% |                                                                                                                                                      |  |  |
|                   | enses = 20%          |                                                                                                                                                      |  |  |
| Guy Carpenter     |                      |                                                                                                                                                      |  |  |

#### First Loss Scales – Example 3 Multiple Locations


#### What premium is needed for a 500K x 200K treaty?

200K to 700K

| 200K t   | o 700K    |
|----------|-----------|
| % of TIV | % of Loss |
| 0.0%     | 0.0%      |
| 10.0%    | 25.0%     |
| 20.0%    | 40.0%     |
| 30.0%    | 50.0%     |
| 40.0%    | 60.0%     |
| 50.0%    | 70.0%     |
| 60.0%    | 75.0%     |
| 70.0%    | 80.0%     |
| 80.0%    | 90.0%     |
| 90.0%    | 96.0%     |
| 100.0%   | 100.0%    |
|          |           |

| BLDG | Prem  | TIV    | Exp Loss | Lower TIV | Upper TIV |
|------|-------|--------|----------|-----------|-----------|
| A    | 100   | 100K   | 60       |           |           |
| В    | 200   | 400K   | 120      | 200K      | 400K      |
| С    | 300   | 500K   | 180      | 200K      | 500K      |
| D    | 400   | 1,000K | 240      | 200K      | 700K      |
| Tot  | 1,000 |        | 600      |           |           |

| Lower % | Upper % | % Loss <sub>Lower</sub> | % Loss <sub>Upper</sub> | Difference | E(Layer Loss) |
|---------|---------|-------------------------|-------------------------|------------|---------------|
|         |         |                         |                         |            |               |
| 50%     | 100%    | 70%                     | 100%                    | 30%        | 36            |
| 40%     | 100%    | 60%                     | 100%                    | 40%        | 72            |
| 20%     | 70%     | 40%                     | 80%                     | 40%        | 96            |
|         |         |                         |                         |            | 204           |



Loss Ratio = 60%

Reins. Expenses = 20%



## First Loss Scales – Example 4

| % of TIV | % of Loss |       |                                          |                                     |
|----------|-----------|-------|------------------------------------------|-------------------------------------|
| 0.0%     | 0.0%      |       |                                          |                                     |
| 10.0%    | 25.0%     | Wh    | at premi                                 | nium is needed for a                |
| 20.0%    | 40.0%     |       | en e |                                     |
| 30.0%    | 50.0%     |       | 300K >                                   | x 200K treaty?                      |
| 40.0%    | 60.0%     |       |                                          |                                     |
| 50.0%    | 70.0%     |       |                                          |                                     |
| 60.0%    | 75.0%     |       |                                          |                                     |
| 70.0%    | 80.0%     |       |                                          |                                     |
| 80.0%    | 90.0%     |       |                                          |                                     |
| 90.0%    | 96.0%     |       |                                          | I wish this wer                     |
| 100.0%   | 100.0%    | -     |                                          |                                     |
| Layer    | # Dialas  |       |                                          | a trick questior<br>but this is the |
|          | # Risks   | Lower | Upper                                    |                                     |
| Α        | 100       | 0     | 100K                                     | kind of data we                     |
| В        | 50        | 100K  | 200K                                     | often get                           |
| С        | 20        | 200K  | 300K                                     |                                     |
| D        | 10        | 300K  | 500K                                     |                                     |
| Tot      | 180       |       |                                          |                                     |

Guy Carpenter

## First Loss Scales – Problem 3

| % of TIV | % of Loss |    |              |               |
|----------|-----------|----|--------------|---------------|
| 0.0%     | 0.0%      |    |              | Wha           |
| 10.0%    | 25.0%     |    |              | <u>vvii</u> d |
| 20.0%    | 40.0%     |    |              |               |
| 30.0%    | 50.0%     |    |              | Need p        |
| 40.0%    | 60.0%     |    |              | · · · · · ·   |
| 50.0%    | 70.0%     |    | If wa        | have to       |
| 60.0%    | 75.0%     |    |              |               |
| 70.0%    | 80.0%     |    |              | A /* 41       |
| 80.0%    | 90.0%     |    | $\mathbf{V}$ | Nithout p     |
| 90.0%    | 96.0%     | _  |              | •             |
| 100.0%   | 100.0%    |    |              |               |
|          |           |    |              |               |
| Layer    | # Ris     | ks | Lower        | Upper         |
| Α        | 100       |    | 0            | 100K          |
| В        | 50        |    | 100K         | 200K          |
| С        | 20        |    | 200K         | 300K          |
| D        | 10        |    | 300K         | 500K          |
| Tot      | 180       |    |              | Guy Carpenter |

<u>What's wrong?</u> Need premium value! If we have total premium – not fatal Without premium – fatal

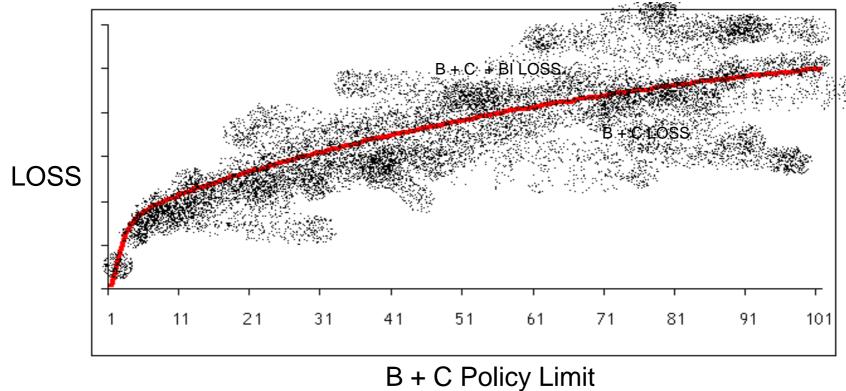
## Wrinkles to Using First Loss Scales

- Need the Correct Information
  - Premium, not number of risks
  - TIV or PML
- Wind vs Fire vs CAT Loss Ratios???
  - Sometimes on a combined basis, sometimes calculate separately
  - Best to have Cat vs Non-Cat

## Wrinkles to Using First Loss Scales

- Appropriate First Loss Scale
  - Over 50 First Loss scales
  - Some are more popular with reinsurers
  - Different scales are used differently

## Wrinkles to Using First Loss Scales


- TIV vs PML vs Other
  - Salzmann Curves Bldg losses for Bldg TIV
  - Ludwig Curves
     All losses but Bldg TIV
  - Some curves apply to PMLs
  - No consistent definition of PML
  - What about blanket limits?

#### **PSOLD** Curves

- 1998 PSOLD Curves Released
- Created to fix assumption of constant loss-to-value ratios across all value ranges
- Calculates average severity of loss given policy limit rather than % of value
- Separate curves for each of:
  - 60 value ranges
  - 38 commercial occupancy classes
  - Building Only (ISO stopped producing these in 2004)
  - Contents Only
  - Buildings + Contents
  - B + C + BI
  - Homeowners

## **PSOLD** Curves

- Buildings and Contents not an issue
- B + C + BI Watch your Limit Profiles!



Guv Carpente

## **PSOLD** Curves

- DO NOT INCLUDE BI IN LIMITS PROFILES WHEN RATING WITH PSOLD (Most US Markets)
  - Overstates Severity of Loss
- First-Loss Scales rely on Total Limits Profile (incl. BI)
- If profiles are to be sent to London or Foreign markets as well as Domestic, include 2 profiles one with BI, and one without

### PSOLD Curves – Example Calculations

|             |             | Limited  |   |
|-------------|-------------|----------|---|
| Loss        | Cumulative  | Average  |   |
| Amount      | Probability | Severity |   |
| 1,000       | 0.300911    | 833      |   |
| 5,000       | 0.69665     | 2,635    |   |
| 10,000      | 0.827319    | 3,765    |   |
| 50,000      | 0.957497    | 6,887    |   |
| 100,000     | 0.978202    | 8,388    |   |
| 500,000     | 0.996166    | 11,734   |   |
| 1,000,000   | 0.998266    | 13,007   |   |
| 1 500,000   | 0.998964    | 13,675   |   |
| 2,000,000   | 0.999301    | 14,101   | D |
| 3,000,000   | 0 999617    | 14,018   |   |
| 4,009,000   | 0.999753    | 14,925   |   |
| 5,000,000   | 0.999822    | 15,134   | D |
| 10,000,000  | 0.999932    | 15,676   |   |
| 50,000,000  | 0.999998    | 16,288   |   |
| 100,000,000 | 1           | 16,322   |   |
| 200,000,000 | i           | 16,329   |   |
| 250,000,000 | 1           | 16,329   | D |
|             |             |          |   |

Subject Premium = \$75M Loss Ratio = 60% Reinsurer Expenses = 15% What premium is needed for a \$3M xs \$2M treaty?

Expected Loss =  $75M \times 0.60 = 45M$ Portion of loss in layer = (15,134 - 14,101) / 16,329= 0.06326

 $($45M \times 0.06326) / (1 - 0.15) = $3,349,148$ 

#### Property Exposure Rating Required Data

#### - Per-Location **By-Band** Bldg vs Cnt vs Bl Limit Limit Range (excl. BI) Deductible/SIR Average SIR Premium Premium Min & Max TIV (or average) TIV Average Participation Participation **Occupancy Distribution** Occupancy For Premium Allocation to Location we need premium by account along with all premium by account along with all press Scales Account ID Location ID this other stuff... Perils Covered Policy ID

Protection, Construction (HO)

# Decomposition of Expected Loss into Frequency and Severity

#### Decomposition into Frequency and Severity

#### Normally, we think of layers for purposes of reinsurance: \$1M xs \$1M \$3M xs \$2M

Remember that frequency X severity = loss cost.

Each layer loss can be split into frequency and severity.

What happens as layer limits get smaller and smaller? What happens to frequency? What happens to severity?

#### Decomposition into Frequency and Severity

Start with a layer of \$1M xs \$1M. you might get some values that look like this:

|            | E(Losses) | E(Sev)    | E(Count) |
|------------|-----------|-----------|----------|
| 1M xs 1M   | 3,214,710 | 492,531.1 | 6.5      |
| 500K xs 1M | 2,204,330 | 337,729.0 | 6.5      |
| 250K xs 1M | 1,323,931 | 202,841.7 | 6.5      |
| 125K xs 1M | 730,869   | 111,977.6 | 6.5      |
| 50K xs 1M  | 311,740   | 47,762.2  | 6.5      |
| 25K xs 1M  | 159,427   | 24,426.1  | 6.5      |
| 1 xs 1M    | 6.5       | 1.0       | 6.5      |

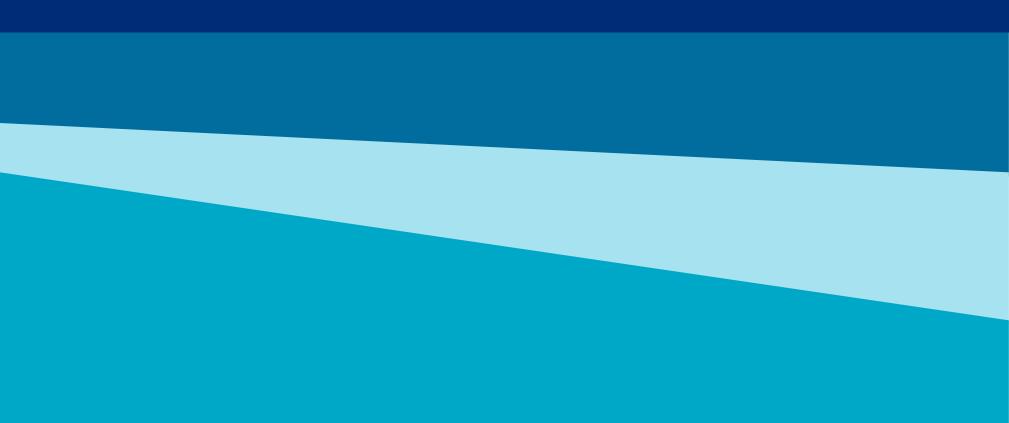
• When your layer gets so thin that your severity is equal to the layer width, your expected loss *IS* your frequency.

#### Decomposition into Frequency and Severity

• When your layer gets so thin that your severity is equal to the layer width, your expected loss *IS* your frequency.

• Why?

- Frequency x severity = expected loss
- That means that


```
Frequency = expected loss / severity
```

```
Frequency = expected loss / 1 = expected loss
```

Frequency = expected loss

• So let's go backwards and pretend we didn't know the severity associated with each layer. Dividing expected loss by frequency for each layer allows you to find the severity of loss for any given layer.

## Calculation of CDF





We can also use the frequency values to calculate the CDF of the loss distribution.

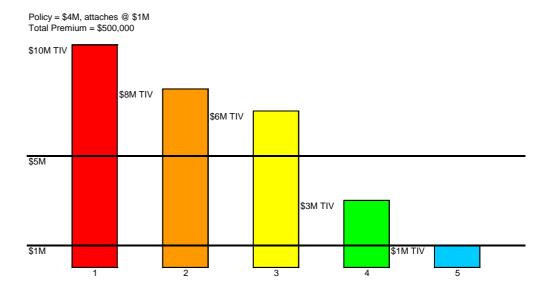
|             |                        |         | CDF                     |
|-------------|------------------------|---------|-------------------------|
| Loss Amount | (Implied Layer)        | Freq    | =1-% of Freq. at Trunc. |
| 500,000     | (\$1 xs \$500,000)     | 25.0291 | -                       |
| 849,323     | (\$1 xs \$849,323)     | 8.9285  | 0.64327                 |
| 1,442,700   | (\$1 xs \$1,442,700)   | 3.1350  | 0.87475                 |
| 2,450,637   | (\$1 xs \$2,450,637)   | 0.7584  | 0.96970                 |
| 4,162,766   | (\$1 xs \$4,162,766)   | 0.1210  | 0.99517                 |
| 7,071,068   | (\$1 xs \$7,071,068)   | 0.0358  | 0.99857                 |
| 12,011,244  | (\$1 xs \$12,011,244)  | 0.0117  | 0.99953                 |
| 20,402,858  | (\$1 xs \$20,402,858)  | 0.0038  | 0.99985                 |
| 34,657,242  | (\$1 xs \$34,657,242)  | 0.0013  | 0.99995                 |
| 58,870,402  | (\$1 xs \$58,870,402)  | 0.0003  | 0.99999                 |
| 100,000,000 | (\$1 xs \$100,000,000) | 0.0000  | 1.00000                 |



## **Premium Allocation**

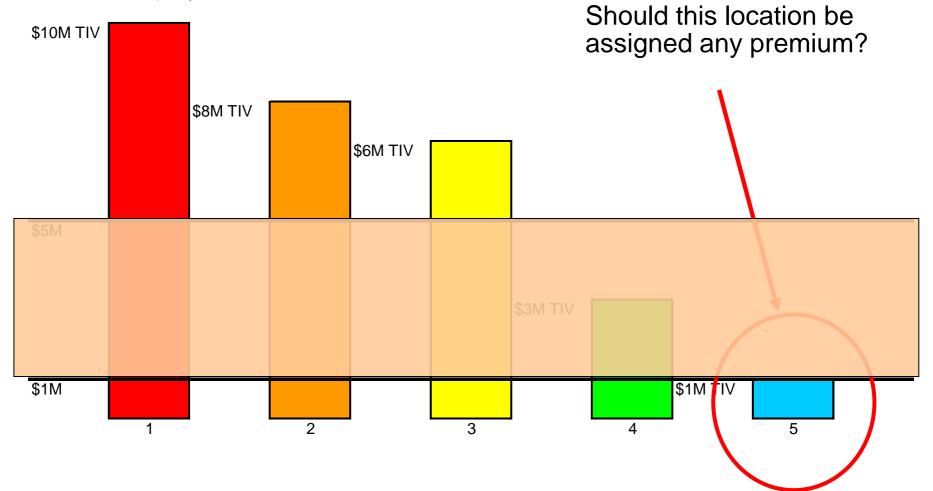


### **Policy Level Data**

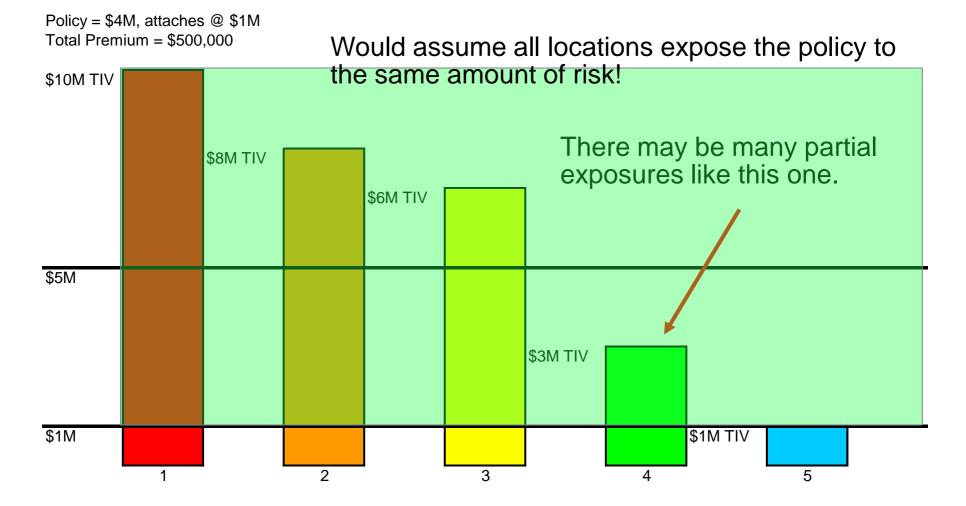

- What do you do when you only have policy level premium?
- We need LOCATION LEVEL data.
- •What assumptions are we making when we use POLICY LEVEL profile data?
  - Every location TIV is equal to policy limit
  - •Every location identical in risk and premium charged
- Does every location have the same value and represent the same amount of risk?

### Why the Need to Allocate Premium

- Exposure Rating Model Inputs:
  - Limit
  - Deductible/Attachment
  - Occupancy
  - Coverage
  - PREMIUM!!


## Allocation of Premium to Individual Location

- When policies cover multiple locations, it is necessary to allocate the premium to each individual location before exposure rating techniques can be properly applied.
- Traditional Methods
  - By TIV
  - All Premium Slotted to Highest Limit
  - By Exposed TIV
- Does this always make sense?
  - Why?
  - Why Not?
- Can we do better?
  - How?

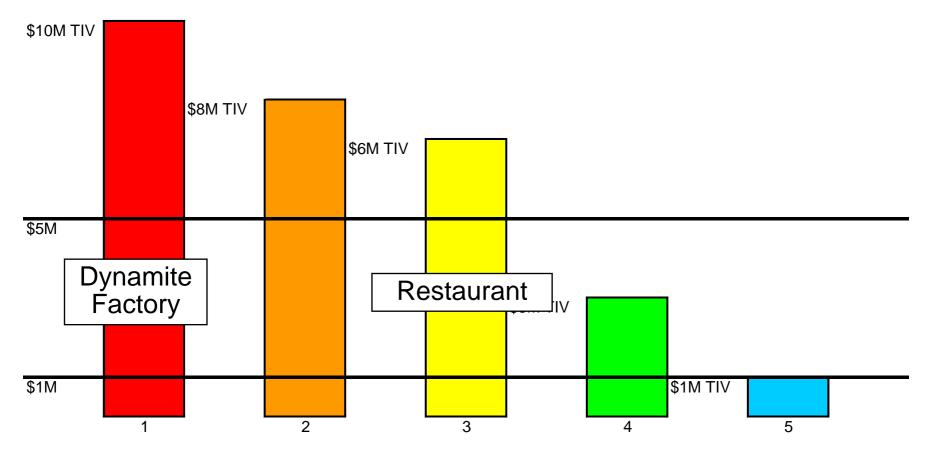



#### Allocation of Premium to Individual Location BY TIV???

Policy = \$4M, attaches @ \$1M Total Premium = \$500,000

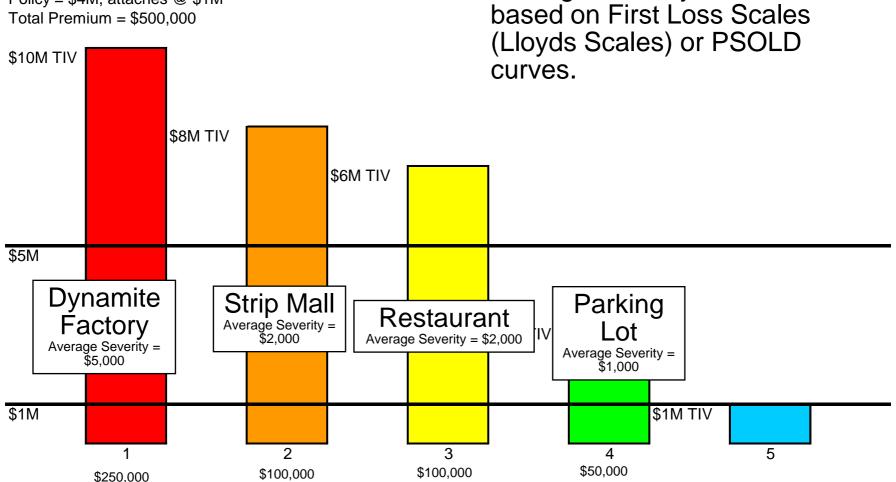


#### Allocation of Premium to Individual Location <u>ALL PREMIUM SLOTTED</u> <u>TO HIGHEST LIMIT???</u>




#### Allocation of Premium to Individual Location BY Exposed TIV???




#### Allocation of Premium to Individual Location BY Exposed TIV???

Policy = \$4M, attaches @ \$1M Total Premium = \$500,000 Do they subject the policy to equal risk?



#### Allocate Based on Potential for Loss SOLUTION

Policy = \$4M, attaches @ \$1M Total Premium = \$500,000



Average Severity of loss can be

# Workers

# Compensation

# Work Comp

#### GOOD NEWS !!!



#### We're only going to do a quick overview

# Work Comp – Pure Rating

- Highly Controlled
- Essentially Rate \* Exposure with a lot of mandated tweaks after that
  - Expense Flattening
  - Experience Credits
  - Lots of Junk, Loads of Terminology

# Work Comp – Pure Rating

- Rates vary by
  - State
  - Hazard Class
  - SIC Code
  - Size of Company (through expense load)

# Work Comp – Exposure Rating

- <u>Reinsurance may be priced</u>
  - Exactly the same way as primary pricing
  - Using Excess Loss Factors

- Why ELF's?
  - No ILFs because WC doesn't have limits
  - No First-Loss Scales (What is Insured Value?)

## Work Comp – Excess Loss Factors

- Excess Loss Factor
  - % of loss above a given retention
  - Basically (1 First Loss Scale %)

#### WC Exposure Rating

- Data Needed From Company
  - Premium and Pricing History
  - Ground-up Losses
    - Indemnity vs Medical
  - Profiles by Hazard Class and State
- Other Data Used
  - Excess Loss Factors

# A FEW LAST COMPLICATIONS

# **General Wrinkles**

- Premium Adequacy
  - In purest sense, assumes premium adequate
  - Can correct for that IF we have sufficient information about company to come up with independent ground-up ultimate loss ratio
- Allocated Loss Adjustment Expense (ALAE)
  - To what extent included?
  - To what extent *should* include?

## **General Wrinkles**

- Risk Loads
  - <u>2 Issues</u>
    - Are there already risk loads in ILFs/FLS/ELFs?
    - What risk load do we want for reinsurance pricing?
  - Risk Loads in Curves
    - Leave in if allocating premium (cessions)
    - Take out if estimating losses or rein prem
  - Risk Load for Reinsurance
    - Need to add one if pricing
    - Lots of methods

Contact Information: Kevin Hilferty – (973) 285 – 7923 Morristown, NJ KHilferty@Guycarp.com