

2005 CAS Seminar on Predictive Modeling

Claudine Modlin, FCAS

Watson Wyatt Worldwide

Retention analysis

- What to measure
- What to consider
- Practical tips
- Why do it

Retention analysis

- What to measure
- What to consider
- Practical tips
- Why do it

- Individual policy (or quote) level
- Offer & resulting accept/lapse
- Policy characteristics
- Rate change information
- Period during which rates changed

Generalized linear models

$$E[Y] = \mu = g^{-1}(X.\beta + \xi)$$

$$Var[Y] = \phi.V(\mu) / \omega$$

- Consider all factors simultaneously
- Allow for nature of random process
- Provides diagnostics
- Robust and transparent

"A Practitioner's Guide to Generalized Linear Models"

Modeling retention

Most companies have data on renewal offers

Modeling new business rates

- If details of individual quotes known, can be modeled in similar way
- Otherwise much simpler analysis is all that can be undertaken

Retention analysis

- What to measure
- What to consider
- Practical tips
- Why do it

What to consider

- Who are your customers
- How do you connect
- What have you done to them
- What have others done to them

Who are your customers?

- Age of policyholder
- Age of car
- Claims history
- Other rating factors
- Endorsement activity

Effect of age of policyholder on lapses

How do you connect with them?

- Distribution channel
- Payment plan
- Other products held
- Endorsement activity
- # years with company

What have you done to them?

- Rate change
- Claims service
- Agent service

Effect of premium change on lapses

Splines

Effect of premium change on renewal using cubic splines

What have others done to them?

- Competitors' premium
- Product differentiation (may not be applicable to some products)

Competitive indices

- For modeling, required at individual policy level
- Sources of competitor info
 - rate manuals
 - comparative rating software
- Measures
 - index (comparing to one competitor or averaged across several)
 - rank of quote relative to competitors
- Challenges
 - tier criteria
 - point in time
 - cost

Effect of competitiveness on new business

Retention analysis

- What to measure
- What to consider
- Practical tips
- Why do it

Statistical assumptions

- A logistic model is most appropriate
 - considers log(p / [1-p]) and binomial error
 - maps [0,1] to $[-\infty,\infty]$
 - invariant to whether you measure lapse/renew
- If lapses are low and results not to be used directly, a Poisson multiplicative model can help
 - theoretically wrong (can predict multiple lapses), but:
 - easier to understand
 - can superimpose one-way results more easily

Practical tip on competitiveness

Superimposing models with and without competitiveness will show extent to which effects are simply price related

Without competitiveness in model With competitiveness in model

Beware absolute premium

- GLM shows effect all other factors being equal
- For varying premium all other factors are never equal
- Results, while statistically correct, can be hard to interpret, for example adding premium size can reverse the multivariate result for age of driver
- Consider fitting separate models for different premiums bands

- Best to have more than one rate change in data
- Investigate % change and \$ change
- Suggest fit rate change as a categorical factor and then model with splines if appropriate
 - some results are straight lines in logistic space, some are clearly not

Beware expectations

- Customer expectations of premium change
 - try to isolate rate change from risk criteria change which affects premium
 - consider premium change adjusted for change in risk criteria (ie new rates for new risk / old rates for new risk)

Retention analysis

- What to measure
- What to consider
- Practical tips
- Why do it

Why model lapses / new business?

- Qualitative management decisions
 - marketing strategies
 - renewal campaigns
- Simple expense loadings
- Modeling
 - simple lifetime modeling
 - detailed impact modeling
 - detailed lifetime modeling
 - price optimization

Customer value

Low

High

High

Retention Lapse model

 Low

Target marketing at these

Increase premiums

Actively target at renewal (discount vouchers / phone calls)

Lifetime expense loads

- Expenses per policy
 - acquisition 100
 - renewal30
- Expected lifetime
 - youngyears
 - old5 years
- Lifetime expense loadings
 - young (100 + 1 * 30)/2 = 65
 - old (100 + 4 * 30) / 5 = 44

Price optimization

- How do we use information from retention models and claims models to change rates optimally?
- Which is more important overall rate changes or relativity changes?
- How quickly and for what types of policyholder should we move the rates to the theoretical position?
- What might happen if I do X?

- Given all this information, what is the "best" rating action?
- Given a form of rating structure, seek the parameters which maximize a company's strategic objectives, perhaps with defined constraints

Ingredients

Data **Current Rates** Portfolio now Competitor **Assumptions** Expenses Model New business **GLMs** Lapse model Loss model model **Test** New Rates

Scenario testing

Problems (1)

- What will the competition do?
- Things change
 - age of insured
 - age of vehicle (home)
 - vehicle (home)
 - address
 - claim surcharges
- What is the measure of success?
- Over what period is the projection done?

Inputs to some models are outputs from others

Sometimes model output needs to be processed and/or recategorized before being input to another model

Example - effect of different base rate changes

Problems (2)

- What are we optimizing?
 - Year 1 profit will not consider value business in the future
 - Putting on a life actuary's hat ...
- Seek "a_x"
 - two big drivers of retention are age and tenure => people get stickier
 - expected life higher than 1/(1-r)
 - but multiply by what profit measure?
 - and account for future rating actions how?

Problems (2)

- What are we optimizing?
 - Year 1 profit will not consider value business in the future
 - Putting on a modern life actuary's hat...

Too many assumptions - (things change)⁵

A pragmatic compromise?

- Constrained optimization
- Seek to maximize profit over short period, subject to constraints such as minimum required business volumes

Examples

- Base rate change
- Base rate change with relativity change
- Premium moderators
- Full optimization

Base rate change

Impact from current relativities to correct relativities

Base rate change with relativity change

Blend of current and theoretically correct relativities

Base rate change with relativity change

ModeratorsTypes of rating structures - simple multiplicative

	Age	Factor	Group	Factor	Sex	Factor	
\$621.50 x	17	2.52	1	0.54	Male	1.00	
	18	2.05	2	0.65	Female	1.25	
	19	1.97	3	0.73			
	20	1.85	4	0.85	Anas	Footo	
	21-23	1.75	5	0.92	Area	Factor	
	24-26	1.54	6	0.96	A	0.95	
	27-30	1.42	7	1.00	В	1.00	
	31-35	1.20	8	1.08	С	1.09	
	36-40	1.00	9	1.19	D	1.15	
	41-45	0.93	10	1.26	E	1.18	
	46-50	0.84	11	1.36	F	1.27	
	50-60	0.76	12	1.43	G	1.36	
	60+	0.78	13	1.56	Н	1.44	

Moderators

Types of rating structures - multiplicative with moderator

Example of use of moderator

Moderators: pros/cons

- Advantages of moderators include:
 - moves everyone to optimal position (subject to acceptable premium increases) more quickly
 - can take into account elasticity for the type of person in question
 - can be less detailed work required regarding underlying parameterization
 - less work required to parameterize in future
- Disadvantages
 - more onerous system requirements
 - harder to understand rating structure
 - likely to result in different quotes for renewals and new business for an identical risk
 - may not be too popular with some regulators?

Parameterizing the moderator Investigation of limiting premium decreases

Parameterizing the moderator Investigation of limiting premium increases given 10% limit on decreases

Full optimization

Optimized premium

Comparison with claims model and current premium

Full optimization

Optimized premium

Comparison with claims model and current premium

2005 CAS Seminar on Predictive Modeling

Claudine Modlin, FCAS

Watson Wyatt Worldwide

