

Fishing for value

Ratemaking analysis process without retention modeling

Rate relativity indication

Example of competitor analysis

Third party cover

P value = 0.0% Rank 9/11

Full ratemaking analysis process

Retention / conversion analysis

- What to measure
- Models / practical tips
- Elasticity modeling
- Why do it

Retention / conversion analysis

- What to measure
- Models / practical tips
- Elasticity modeling
- Why do it

Modeling retention

- Probability that an invitation to renew accepts
- Most companies have data on renewal offers

Modeling new business rates

- Probability that a new business quotations accepts
- Requires details of failed quotes otherwise much simpler analysis is all that can be undertaken

What drives a customer's retention behaviour?

- How much do they shop around?
- How bothered are they about price differences of differing amounts?
- How much do they value the relationship and brand?
- What is their experience of dealing with the insurer?
- How affected are they by competitors' marketing?
- What else is going on in their lives?

- Who are your customers?
- How do you connect?
- What have you done to them?
- What have others done to them?

Who are your customers?

- Age of policyholder
- Age of car
- Claims history
- Product features
- Other rating factors
- Endorsement activity
- Lifestyle factors

Effect of age of policyholder on lapses

How do you connect with them?

- Distribution channel
- Payment plan
- Affinity membership
- Other products held
- # years with company

What have you done to them?

- Proposed rate change
- Last year's rate change
- Cumulative rate changes
- Communications
- Claims service
- Agent service

Effect of premium change on lapses

What have others done to them?

- Competitors' premium
- Competitors' marketing
- Product differentiation (may not be applicable to some products)

Competitive indices

- For full modeling, required at individual policy level
- Sources of competitor info
 - rate manuals
 - comparative rating software
- Measures
 - index (comparing to one competitor or averaged across several)
 - rank of quote relative to competitors
- Challenges
 - tier criteria
 - point in time
 - cost

Effect of competitiveness on new business

Retention / conversion analysis

- What to measure
- Models / practical tips
- Elasticity modeling
- Why do it

Data required

- Individual policy (or quote) level
- Offer & resulting accept/lapse
- Policy characteristics and other information
- Rate change information
- Period during which rates changed

Models

- Generalized linear models cope well with most common requirements
- A logistic model is most appropriate
 - considers log(p / [1-p]) with binomial error
 - maps [0,1] to $[-\infty, \infty]$
 - invariant to whether you model lapse/renew
- If lapses are low and results not to be used directly, a Poisson multiplicative model can help
 - theoretically wrong (can predict multiple lapses), but easier to communicate

Beware expectations

- Customer expectations of premium change
 - try to isolate rate change from risk criteria change which affects premium
 - consider premium change adjusted for change in risk criteria (ie new rates for new risk / old rates for new risk)

Beware absolute premium

- GLM shows effect all other factors being equal
- For varying premium all other factors are never equal
- Results, while statistically correct, can be hard to interpret
 - for example adding premium size can reverse the multivariate result for age of driver
- Consider fitting separate models for different premiums bands

How much is down to competitiveness?

Superimposing models with and without competitiveness will show extent to which effects are simply price related

Without competitiveness in model With competitiveness in model

Retention / conversion analysis

- What to measure
- Models / practical tips
- Elasticity modeling
- Why do it

Elasticity modeling

- Focussing on the rate change variable
- Seek to understand how new business and renewal volumes will respond to different future rate changes
- Key in scenario testing and price optimization analyses

Elasticity modeling

Data

- need a range of historic rate changes
- not linked to particular events
- ideally randomized trials
- if not, other legitimate model changes might yield range of rate changes to provide insight
- balance credibility of volume with relevance of experience period

Model

- Elasticity curve may need to be smooth splines
- Consider interactions of price change with key variables elasticity can vary by type of policy

Example retention curve

Retention analysis

Run 4 Model 2 - Interactions - Retention model

Retention / conversion analysis

- What to measure
- Models / practical tips
- Elasticity modeling
- Why do it

Why model lapses / new business?

- Qualitative management decisions
 - marketing strategies
 - renewal campaigns
- Modeling
 - expense loading
 - simple lifetime modeling
 - detailed "model office" scenario testing
 - price optimization

Customer value

High

Retention Lapse model

Low

Lifetime expense loads

- Expenses per policy
 - acquisition 100
 - renewal30
- Expected lifetime
 - youngyears
 - old5 years
- Lifetime expense loadings
 - young (100 + 1 * 30)/2 = 65
 - old (100 + 4 * 30) / 5 = 44

Price optimization

Scenario testing and price optimization

- What will happen if I do rating action X?
- What is the "best" rating action?
 - given a form of rating structure, seek the parameters which maximize a company's strategic objectives, perhaps with defined constraints

- 1. Assemble ingredients
- 2. Build a "model office" scenario test
- 3. Define problem and success criteria
- 4. Optimize

Ingredients

Data **Current Rates** Portfolio now Competitor Assumptions Expenses Model New business **GLMs** Lapse model Loss model model **Test** New Rates

Scenario testing

Issues

- Competition
- Changes to model
 - age of insured
 - age of vehicle (home)
 - claim surcharges
 - vehicle (home)
 - address
- Programming issues
- Period of projection
- Success criteria

Period of projection

Multiple year projections

Multiple year projections

- In theory project many years
- In practice assumptions become too uncertain and model becomes too complex

A pragmatic compromise?

Success criteria

- Depends on problem being solved
- Simple scenario tests to consider a one or two parameter problem:
 - consider many success criteria eg both volume and profit in each of first two years
- Full optimization with many parameters or at individual policy level:
 - combined measure eg *Profit* + λ . *Volume*
- Constrained optimisation

Types of optimization

- Optimization via scenario tests
 - base rate change
 - simple relativity tweaks
 - moderator algorithms
- Full optimization
 - rating structure via individual policy
 - individual policy
 - calibration of point of sale optimisation algorithm

Base rate change - consider profit vs volume

Base rate change - single success criteria

Base rate change with simple relativity change

Moderators

Types of rating structures - multiplicative with moderator

Parameterizing the moderator Investigation of limiting premium decreases

Parameterizing the moderator Investigation of limiting premium increases given 10% limit on decreases

Types of optimization

- Optimization via scenario tests
 - base rate change
 - simple relativity tweaks
 - moderator algorithms
- Full optimization
 - rating structure via individual policy
 - individual policy
 - calibration of point of sale optimisation algorithm

Full optimisation

 A typical rating structure contains too many dimensions in which to search easily

Full optimisation

Exposi	Age of di	Gender	Marital St	Tellio,	Credit sc	Karned Pre	*Cains b	CHITTE O LOSS	*Claims Po	Curredioses			
		œ \		Es /		8 /	THE S		S. C.		8	Optimal premium	
1	1.00	22	М	S	12	178	2,331	0	-	0	-	2,651	_ \
2	0.65	39	F	D	2	569	512	0	-	1	650	561	
3	0.35	39	F	D	4	569	440	0	-	0	-	412	
4	1.00	58	F	М	6	715	968	0	-	0	-	745	
5	0.66	47	M	М	19	202	760	1	16,138	0	-	699	
6	1.00	35	M	М	32	550	815	0	-	0	- '	894	
7	1.00	46	M	S	17	420	1,012	0	-	0	-	1,242	
						•			-	·			,

- For each policy optimize desired success criteria
- Result is individual premium for each renewal
- For new business and amendments, and if required for renewals, can approximate results with a single structure by fitting GLM to optimized individual rates

Optimized rates can be rather non-linear - a few interactions might be needed to approximate well

Example of full optimisation

Optimized premium

Comparison with claims model and current premium

Example of full optimisation

Optimized premium

Comparison with claims model and current premium

More details...

- Specified global constraints, eg minimum business volume, can be incorporated in optimization algorithm
- For a given policy, the best action next year is interdependent with the action the following year(s) - embedded/looped optimizations allow consideration of actions in the future (which will need revisiting next year)
- Value of cross-sell can be included within optimization
- Point of sale optimisation

Optimization - issues

- IT administration constraints
 - speed / point of sale competitor data
- Will ruthlessly penalize errors in risk models, in particular categorisations
- Do not leave unattended!
- Constraints from marketing messages / distribution issues
- Not "inadequate", "excessive", "unfairly discriminatory"...

Example of full optimisation

Optimized premium

Comparison with claims model and current premium

Fishing for value

