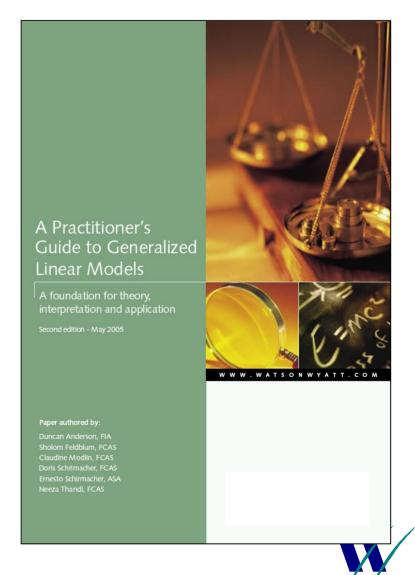


Agenda

- Introduction
- Testing the link function
- The Tweedie distribution
- Splines
- Reference models
- Aliasing / near aliasing
- Combining models across claim types
- Restricted models
- Model validation

"A Practitioner's Guide to GLMs"

- 2004 CAS Discussion Paper Program
- Discusses
 - testing the link function
 - the Tweedie distribution
 - aliasing / near aliasing
 - combining models across claim types
 - restricted models
- Copies available here



$$E[Y_i] = \mu_i = g^{-1}(\Sigma X_{ij}\beta_j + \xi_i)$$

$$Var[Y_i] = \phi.V(\mu_i)/\omega_i$$

- Consider all factors simultaneously
- Provide statistical diagnostics
- Allow for nature of random process
- Robust and transparent
- Increasingly a global industry standard

$$E[\underline{Y}] = \underline{\mu} = g^{-1}(\mathbf{X}.\underline{\beta} + \underline{\xi})$$

$$Var[\underline{Y}] = \phi.V(\underline{\mu})/\underline{\omega}$$

$$E[Y] = \mu = g^{-1}(X \cdot \beta + \xi)$$
Link function

Y-variate

Design matrix

Parameter estimates

$$E[\underline{Y}] = \underline{\mu} = g^{-1}(\mathbf{X}.\underline{\beta} + \underline{\xi})$$

Some function (user defined)

Observed thing (data)

Some matrix based on data (user defined)

Parameters
to be
estimated
(the answer!)

Known

effects

Var[Y] =
$$\phi$$
.V(μ)/ ω
Prior weights
Scale parameter

Variance function

- Usually assume exponential family, eg
- $\phi = \sigma^2$ (estimated), $V(x) = 1 \implies Var[Y_i] = \sigma^2$ Normal
- $\phi = 1$ (specified), $V(x) = x \Rightarrow Var[Y_i] = \mu_i$ Poisson
- $\phi = k$ (estimated), $V(x) = x^2 \Rightarrow Var[Y_i] = k\mu_i^2$ Gamma

Agenda

- Introduction
- Testing the link function
- The Tweedie distribution
- Splines
- Reference models
- Aliasing / near aliasing
- Combining models across claim types
- Restricted models
- Model validation

Offset ξ

Link function g(x)

Linear Predictor Form

$$\mathbf{X} \cdot \underline{\beta} = \alpha_i + \beta_j + \gamma_k + \delta_l$$

Data

Y

Error Structure $V(\underline{\mu})$

Scale Parameter

Prior Weights

Numerical MLE

Parameter Estimates

Diagnostics

Model testing

- Use only those factors which are predictive
 - standard errors of parameter estimates
 - F tests / χ^2 tests on deviances
 - stepwise approach (helpful if used with care)
 - consistency over time
 - human intuition
- Make sure the model is reasonable
 - variance function: residual plots(histograms / Q-Q / residual vs fitted value etc)
 - outliers: leverage / Cook's distance
 - link function: Box-Cox

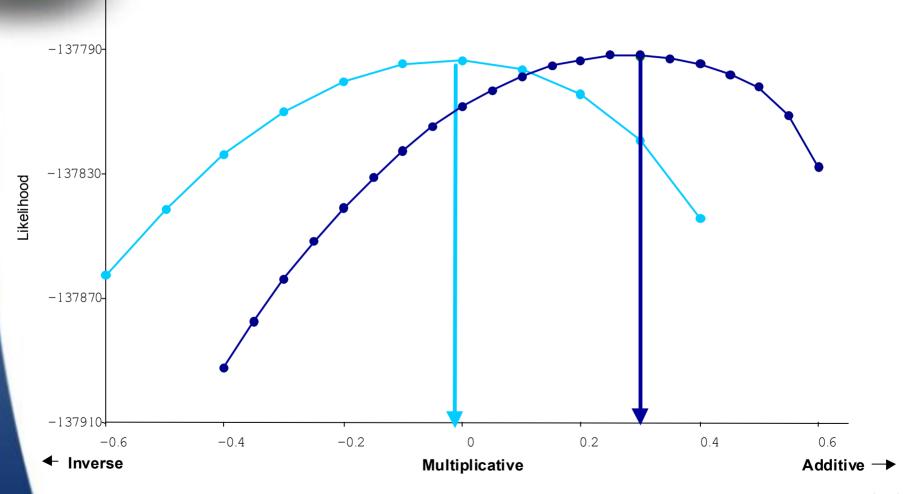
Box-Cox link function investigation

GLM structure is

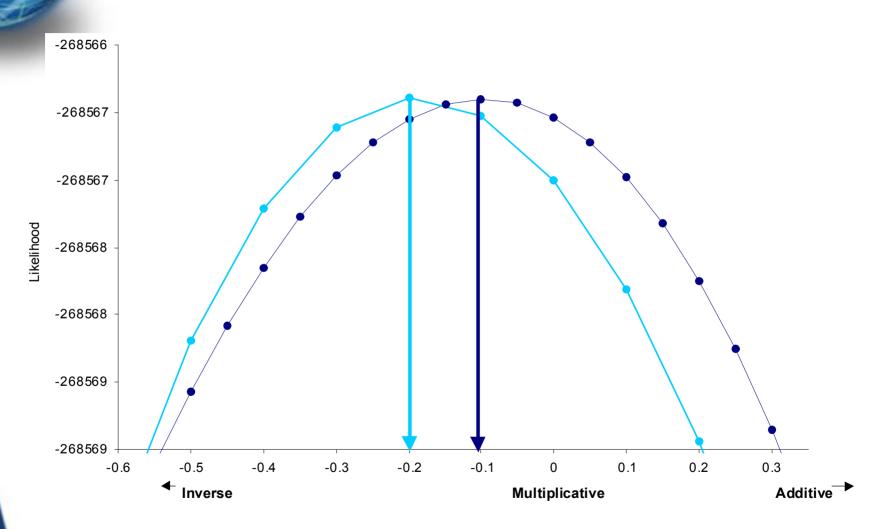
$$E[\underline{Y}] = \underline{\mu} = g^{-1}(\mathbf{X}.\underline{\beta} + \underline{\xi}) \quad Var[\underline{Y}] = \phi.V(\underline{\mu}) / \underline{\omega}$$

- Box Cox transforms defines $g(x) = (x^{\lambda} 1) / \lambda$ for $\lambda \neq 0$, $\ln(x)$ for $\lambda = 0$
- $\lambda = 1 \Rightarrow g(x) = x 1 \Rightarrow additive$ (with base level shift)
- $\lambda \to 0 \Rightarrow g(x) \to ln(x) \Rightarrow multiplicative$ (via maths)
- $\lambda = -1 \Rightarrow g(x) = 1 1/x \Rightarrow inverse$ (with base level shift)
- Try different values of λ and measure goodness of fit to see which fits experience best

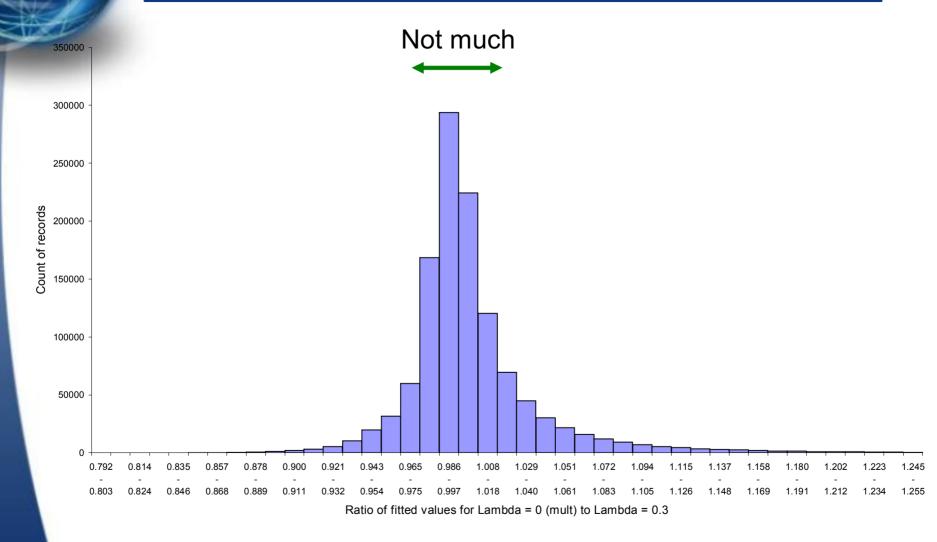
Box-Cox link function investigationAuto third party property damage frequencies



Box-Cox link function investigation Auto third party property damage average amounts



Box-Cox link function investigationComparing fitted values of different link functions

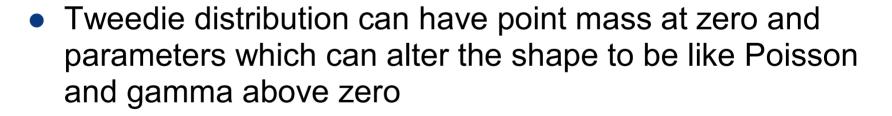


Agenda

- Introduction
- Testing the link function
- The Tweedie distribution
- Splines
- Reference models
- Aliasing / near aliasing
- Combining models across claim types
- Restricted models
- Model validation

Tweedie distributions

- Incurred losses have a point mass at zero and then a continuous distribution
- Poisson and gamma not suited to this



$$f_{Y}(y;\theta,\lambda,\alpha) = \sum_{n=1}^{\infty} \frac{\left\{ (\lambda \omega)^{1-\alpha} \kappa_{\alpha} (-1/y) \right\}^{n}}{\Gamma(-n\alpha)n! y} \cdot \exp\left\{ \lambda \omega [\theta_{0} y - \kappa_{\alpha}(\theta_{0})] \right\} \quad \text{for } y > 0$$

$$p(Y=0) = \exp\{-\lambda \omega \kappa_{\alpha}(\theta_0)\}$$

Tweedie distributions

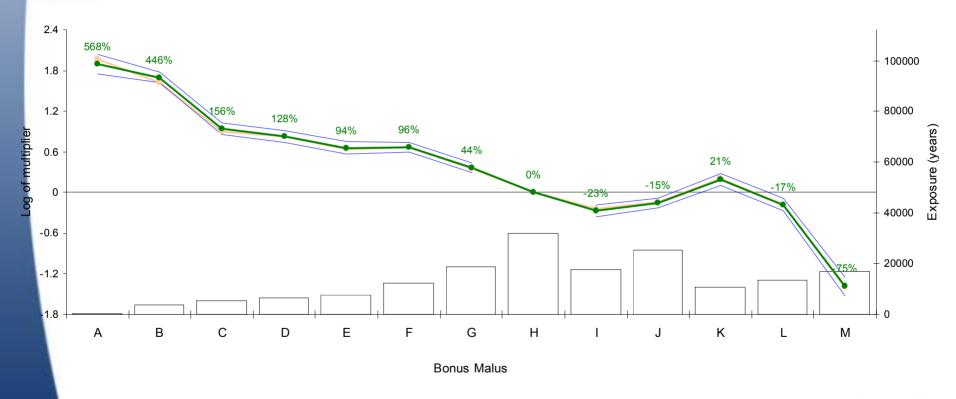
Tweedie:
$$\phi = k$$
, $V(x) = x^p \Rightarrow Var[\underline{Y}] = k\underline{\mu}^p$

- p=1 corresponds to Poisson, p=2 to gamma
- Defines a valid distribution for p<0, 1<p<2, p>2
- Can be considered as Poisson/gamma process for 1<p<2
- Need to estimate both k and p when fitting models
 often estimate a where p = (2-a)/(1-a)
- Typical values of p for insurance incurred claims around, or just under, 1.5

Example 1: frequency

Comparison of Tweedie model with traditional frequency/amounts approach

Run 7 Model 2 - Frequency



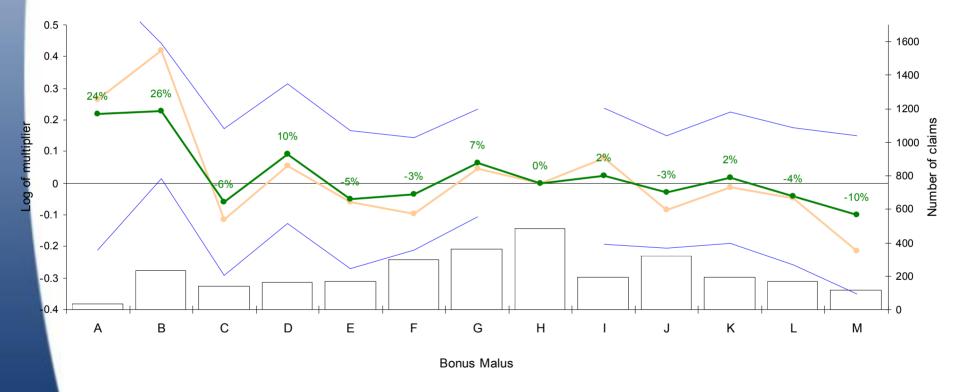
P value = 0.0% Rank 12/12

Onew ay relativities —— Approx 95% confidence interval —— Unsmoothed estimate —— Smoothed estimate

Example 1: amounts

Comparison of Tweedie model with traditional frequency/amounts approach

Run 7 Model 6 - Amounts



EXCLUDED FACTOR

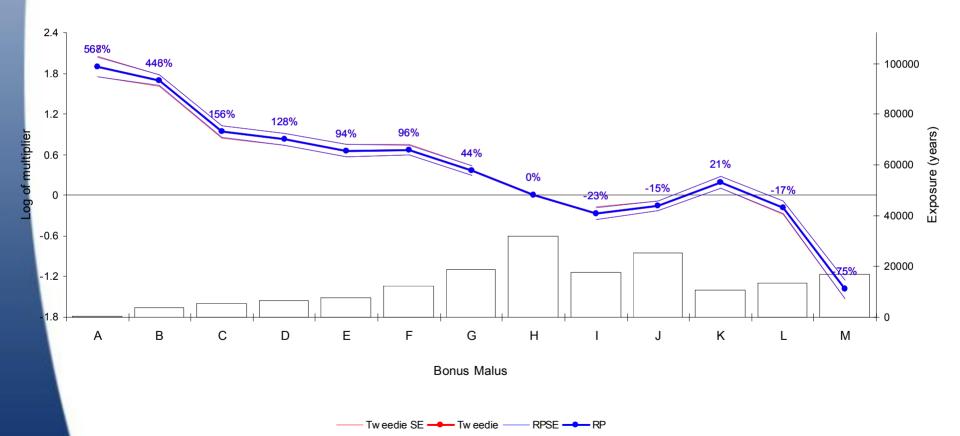
Oneway relativities —— Approx 95% confidence interval —— Unsmoothed estimate —— Smoothed estimate

P value = 50.9% Rank 4/12

Example 1: traditional RP vs Tweedie

Comparison of Tweedie model with traditional frequency/amounts approach

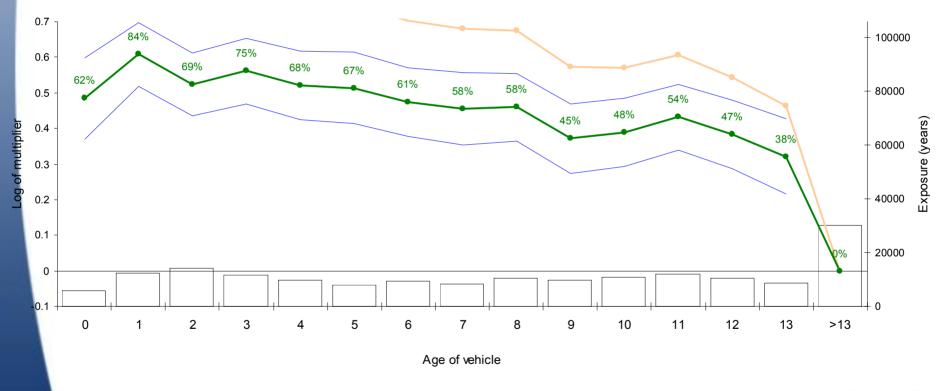
Run 11 Model 2 - Tweedie Models



Example 2: frequency

Comparison of Tweedie model with traditional frequency/amounts approach

Run 7 Model 1 - Frequency

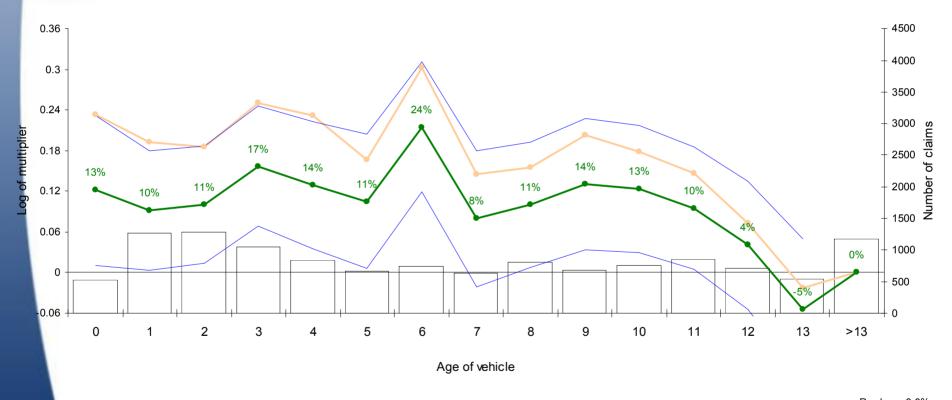


P value = 0.0% Rank 12/12

Example 2: amounts

Comparison of Tweedie model with traditional frequency/amounts approach

Run 7 Model 5 - Amounts



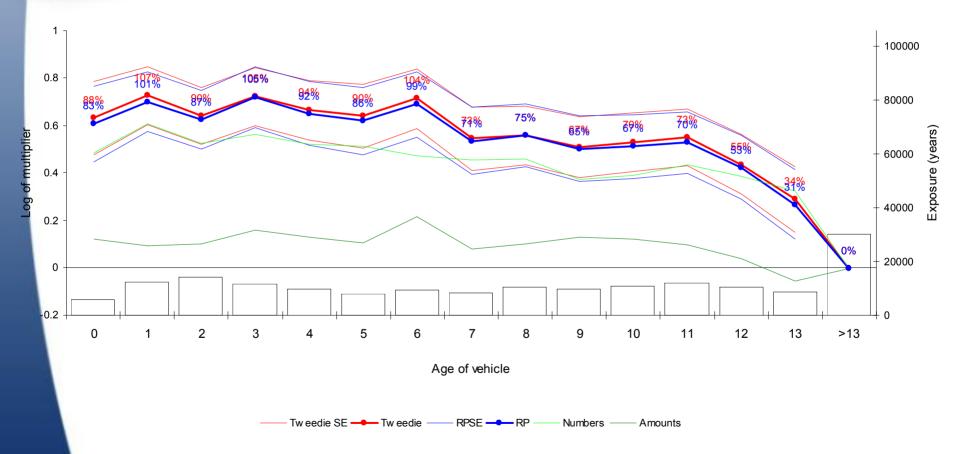
P value = 0.0% Rank 5/7

Onew ay relativities —— Approx 95% confidence interval —— Unsmoothed estimate —— Smoothed estimate

Example 2: traditional RP vs Tweedie

Comparison of Tweedie model with traditional frequency/amounts approach

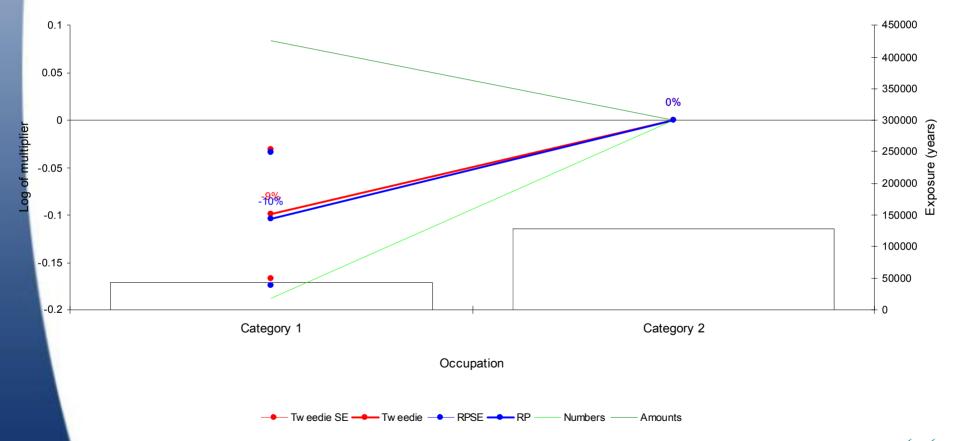
Run 11 Model 1 - Tweedie Models



Example 3: traditional RP vs Tweedie

Comparison of Tweedie model with traditional frequency/amounts approach

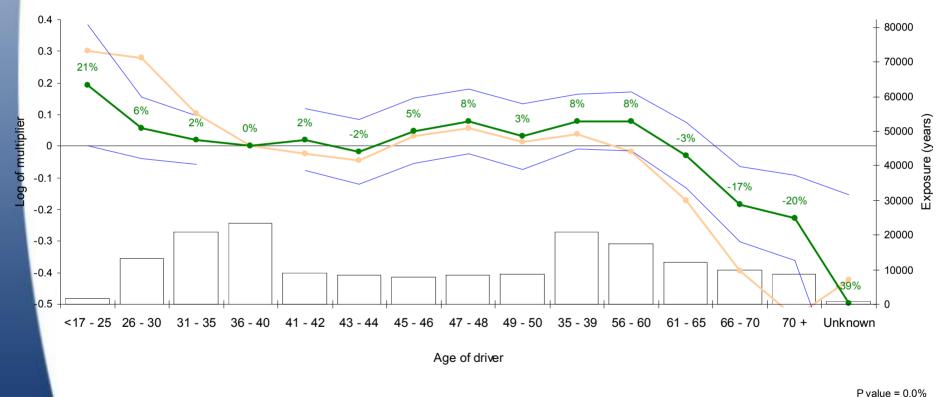
Run 11 Model 1 - Tweedie Models



Example 4: frequency

Comparison of Tweedie model with traditional frequency/amounts approach

Run 7 Model 1 - Frequency



Unsmoothed estimate —— Smoothed estimate

Approx 95% confidence interval

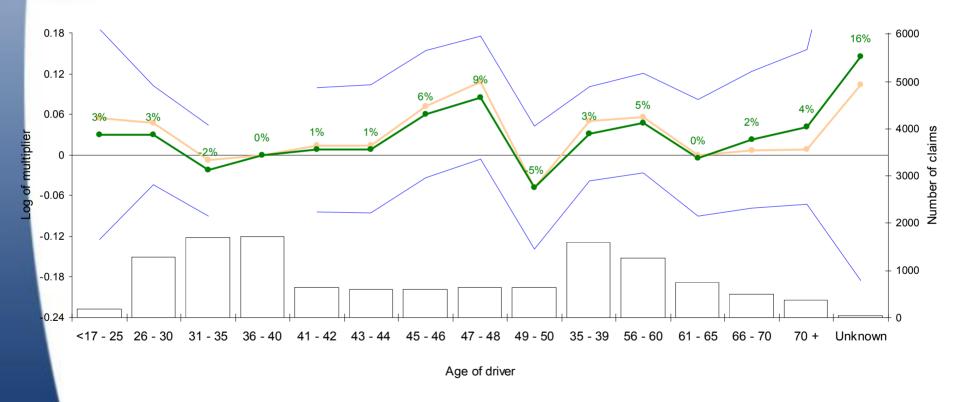
Rank 5/12

Onew ay relativities

Example 4: amounts

Comparison of Tweedie model with traditional frequency/amounts approach

Run 7 Model 5 - Amounts



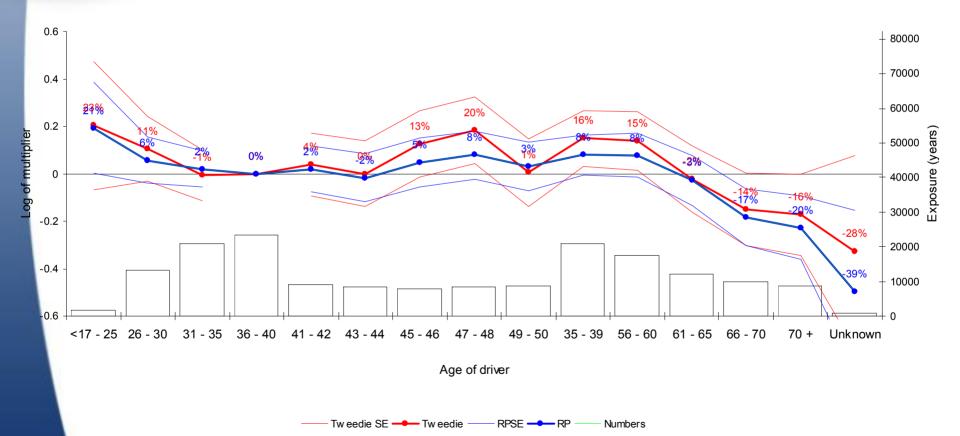
EXCLUDED FACTOR —— Onew ay relativities —— Approx 95% confidence interval —— Unsmoothed estimate —— Smoothed estimate

P value = 50.6% Rank 4/9

Example 4: traditional RP vs Tweedie

Comparison of Tweedie model with traditional frequency/amounts approach

Run 11 Model 1 - Tweedie Models

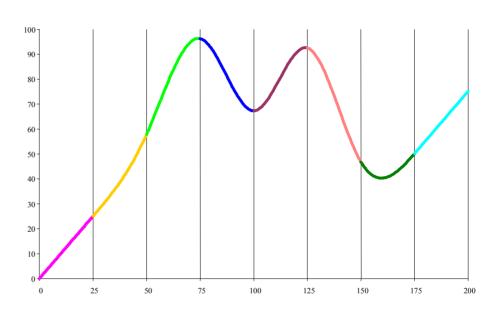


Agenda

- Introduction
- Testing the link function
- The Tweedie distribution
- Splines
- Reference models
- Aliasing / near aliasing
- Combining models across claim types
- Restricted models
- Model validation

Spline definition

 A series of polynomial functions, with each function defined over a short interval



- Intervals are defined by k+2 knots
 - two exterior knots at extremes of data
 - variable number (k) of interior knots
- At each interior knot the two functions must join "smoothly"

Cubic splines

- Each polynomial is a cubic
 - $a + bx + cx^2 + dx^3$
- "Smoothness" at interior knots is defined as:
 - continuous
 - continuous first derivative
 - continuous second derivative

Regression splines

- The position of the knots is specified by the user
- Standard GLMs can be used by careful definition of variates
- Pros
 - fits easily into existing structures
 - no complex resampling needed

- Cons
 - position of knots can effect final answer

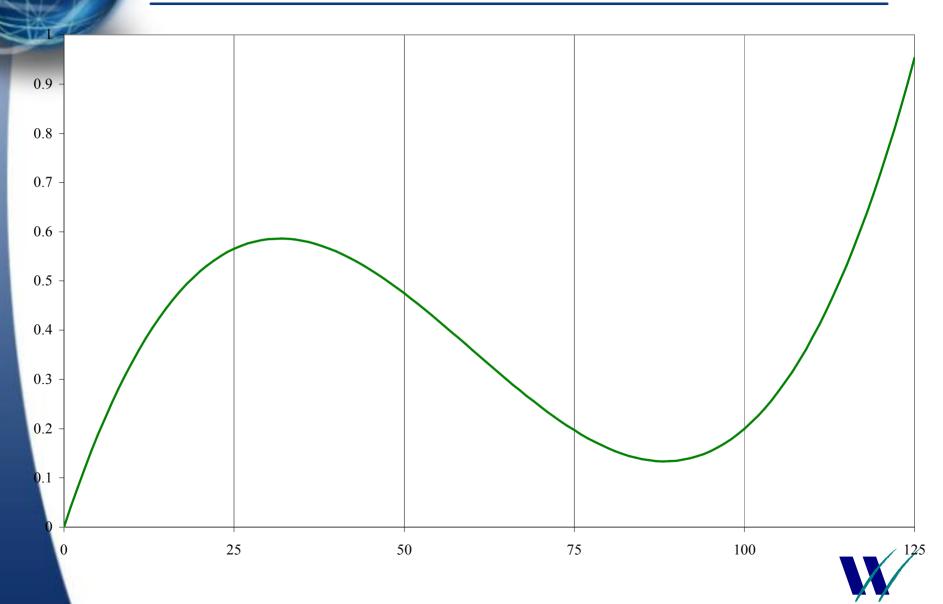
Smoothing splines

- One knot at each unique data value
- Additional curvature penalty prevents over fitting
- Curvature penalty selected by repeatedly sampling subsets and optimising generalised goodness of fit measure such as AIC
- Pros
 - allows data to guide final result
- Cons
 - 100s of knots required
 - optimisation process is time-consuming
 - difficult to produce new fitted values

"Easy" regression splines

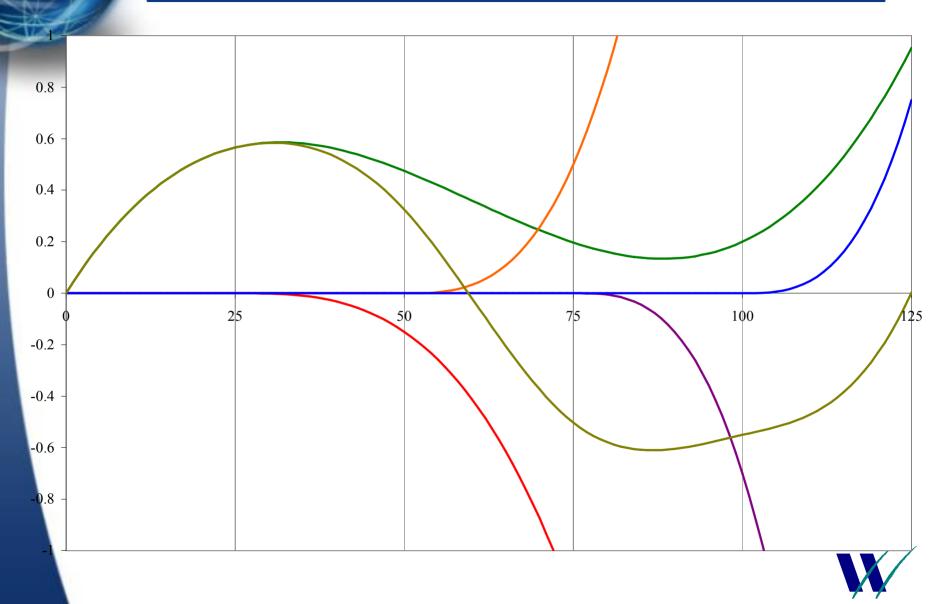
- Fit a cubic over the whole range
 - simply define x, x² and x³ as variates and include in the model
- Fit additional cubic "correction" variates for each interval, defined as
 - -0 if $x < k_r$
 - $-((x k_r)/(k_{r+1} k_r))^3$ otherwise

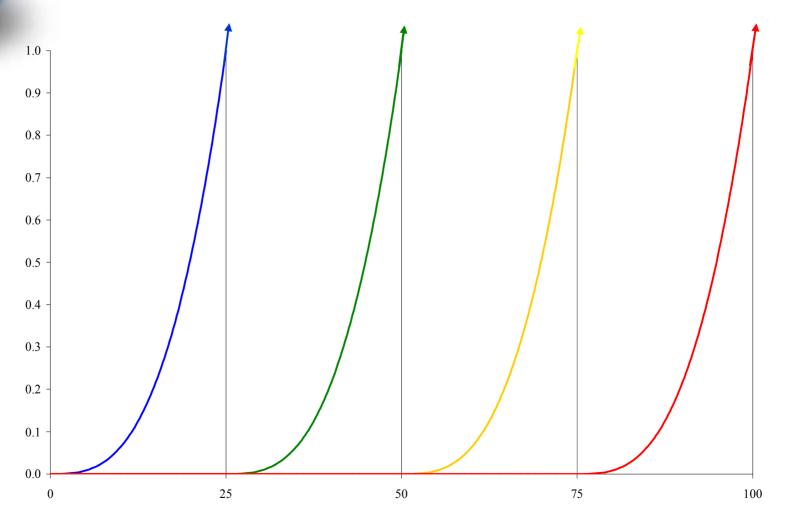
"Easy" regression splines

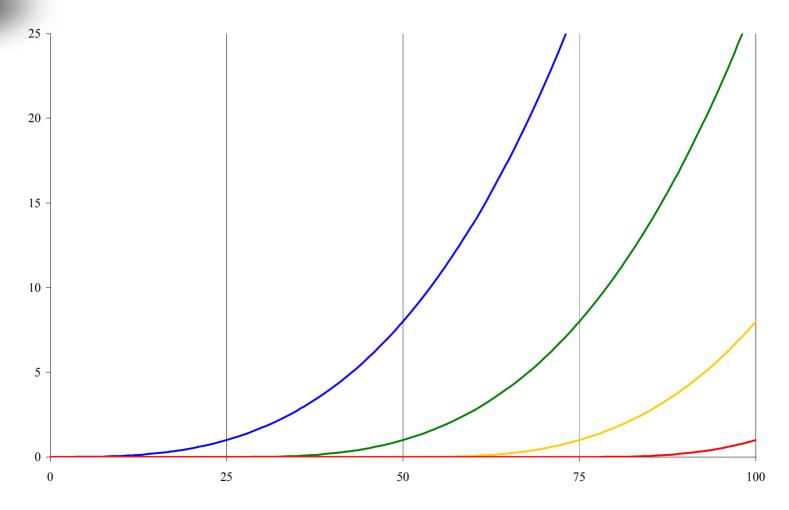


"Easy" regression splines



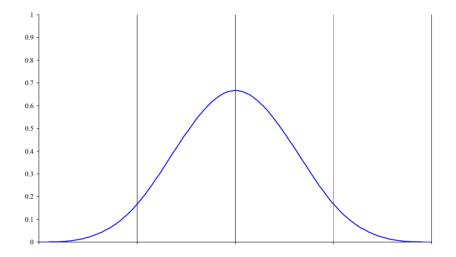




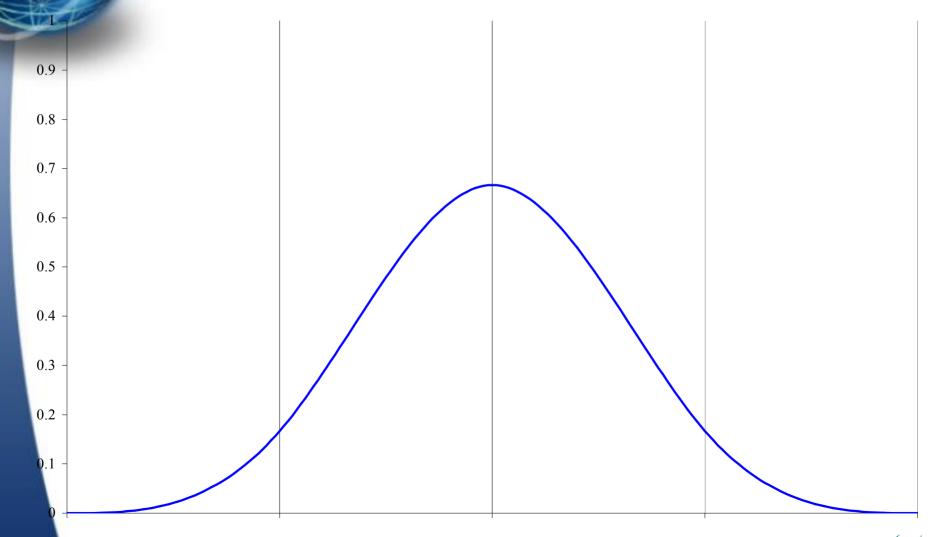


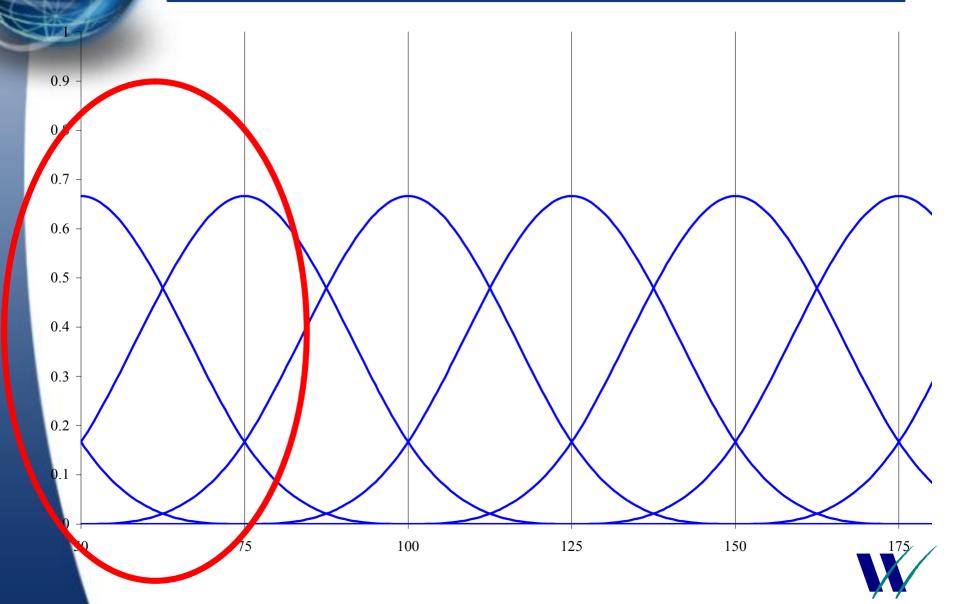
- "Correction" variates get large quickly
- In practice GLM process can struggle with these large numbers
- Alternate basis is clearly desirable so that:
 - underlying variate remains small for all possible values of x
 - easy to impose additional edge constraints (linear or constant extrapolation is desirable)

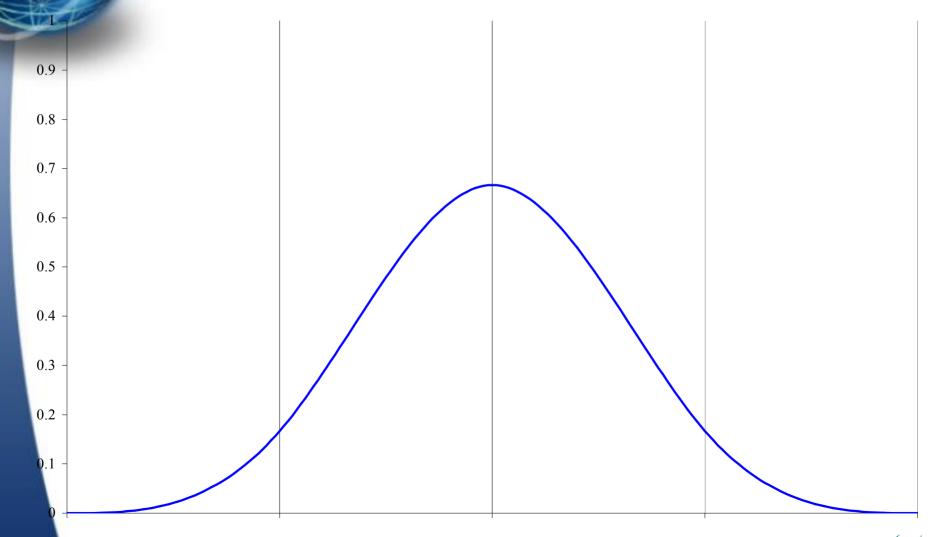
- Set of basis functions usually covering four segments (defined by five knots)
- Each function is itself a cubic spline

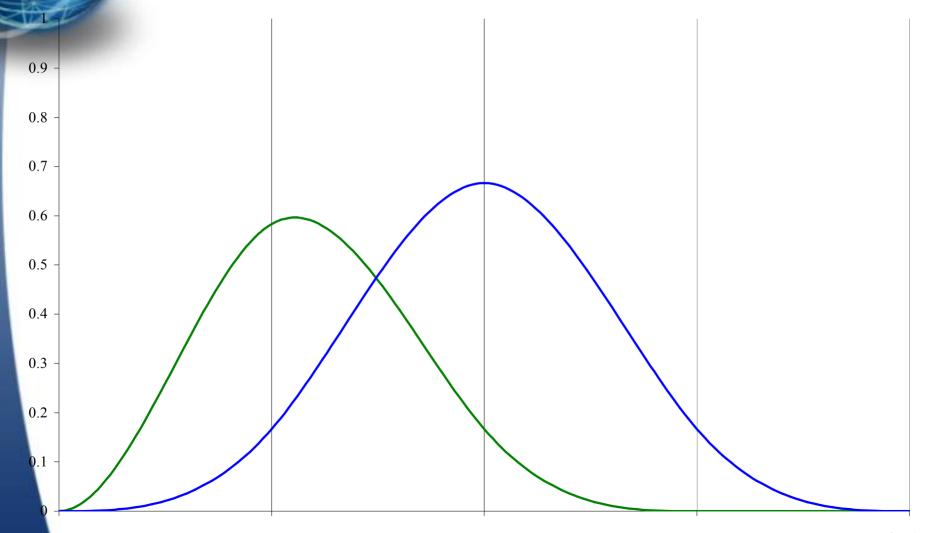


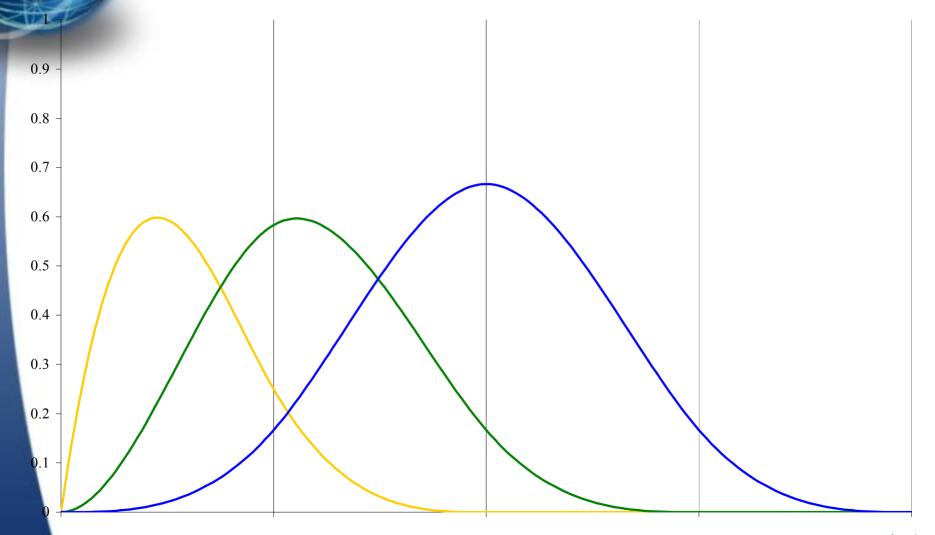
 Each basis function has the same shape, except for the three basis functions at each extreme which occupy fewer than four segments

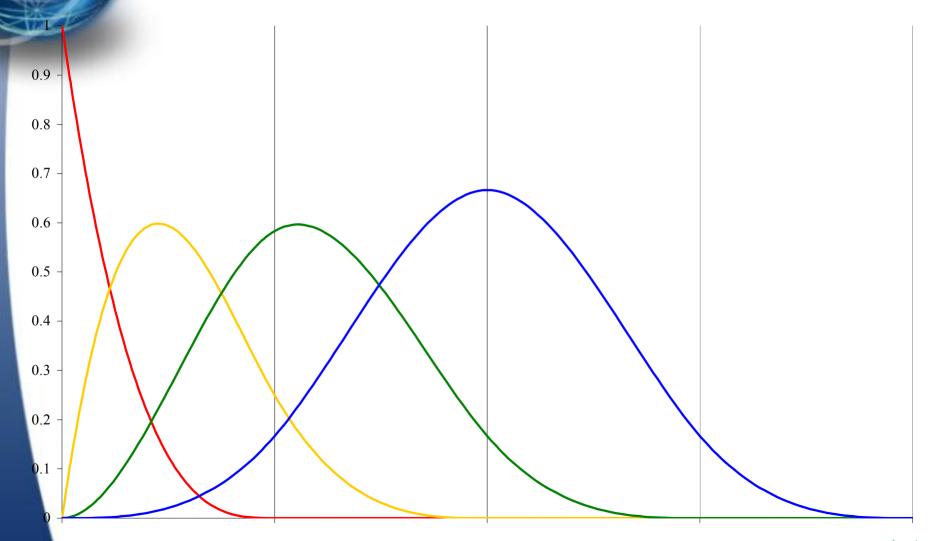


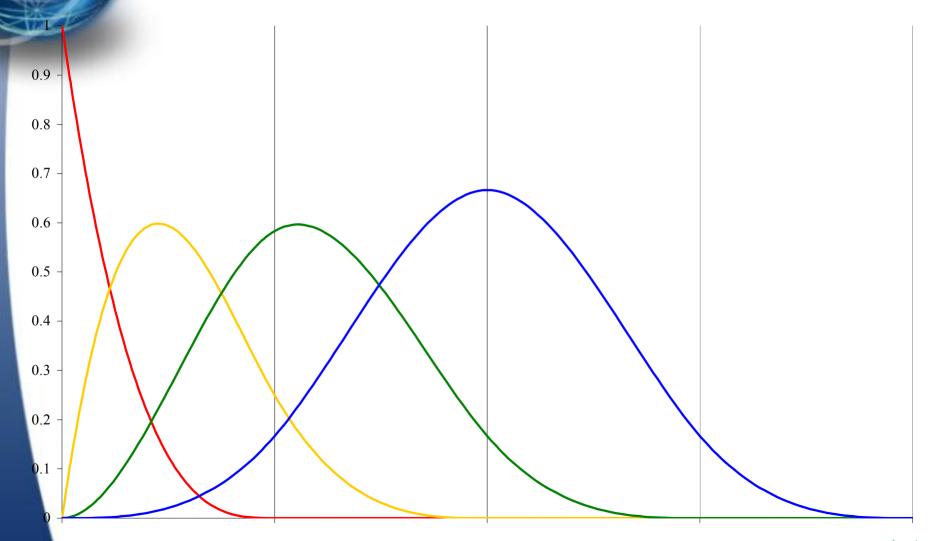


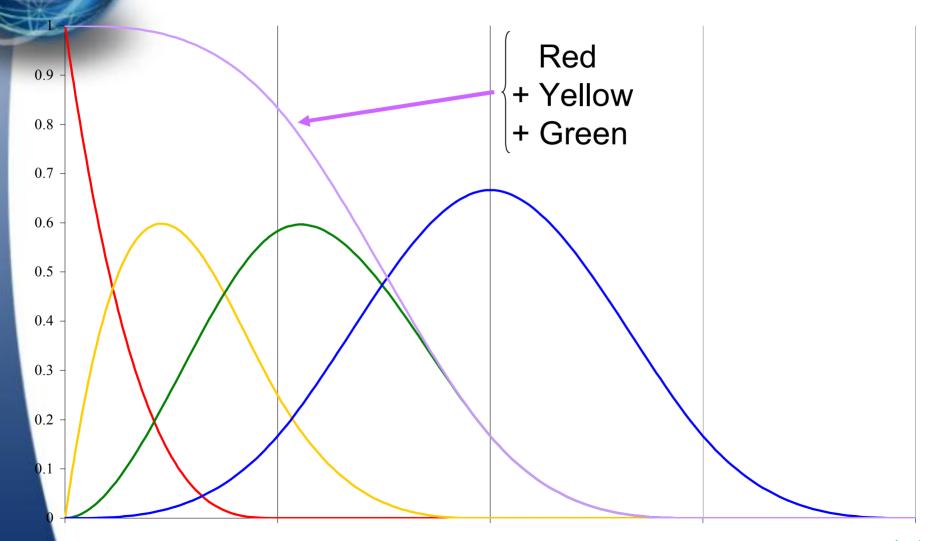


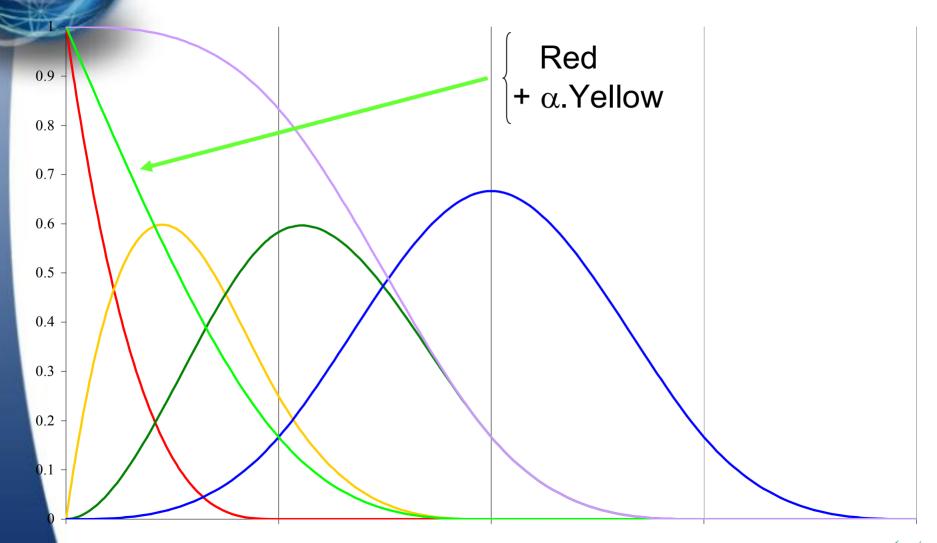




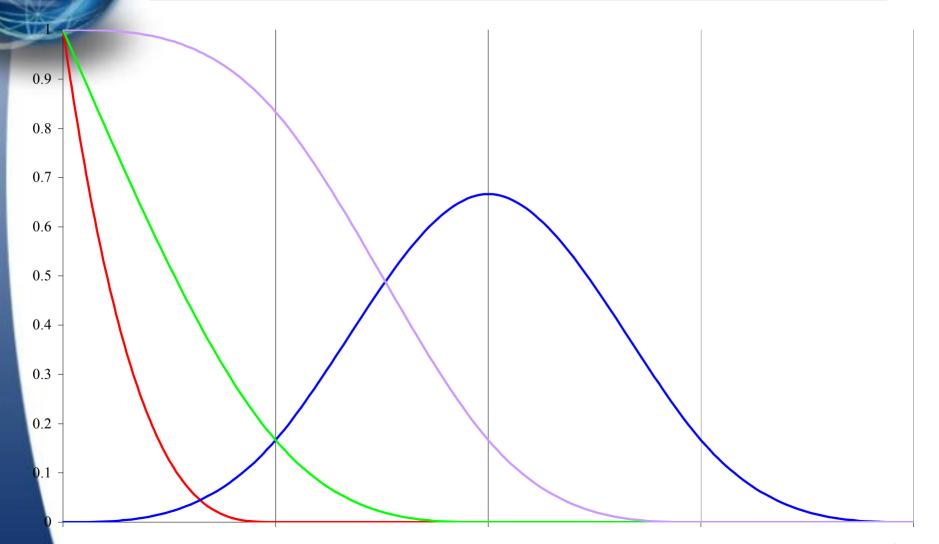




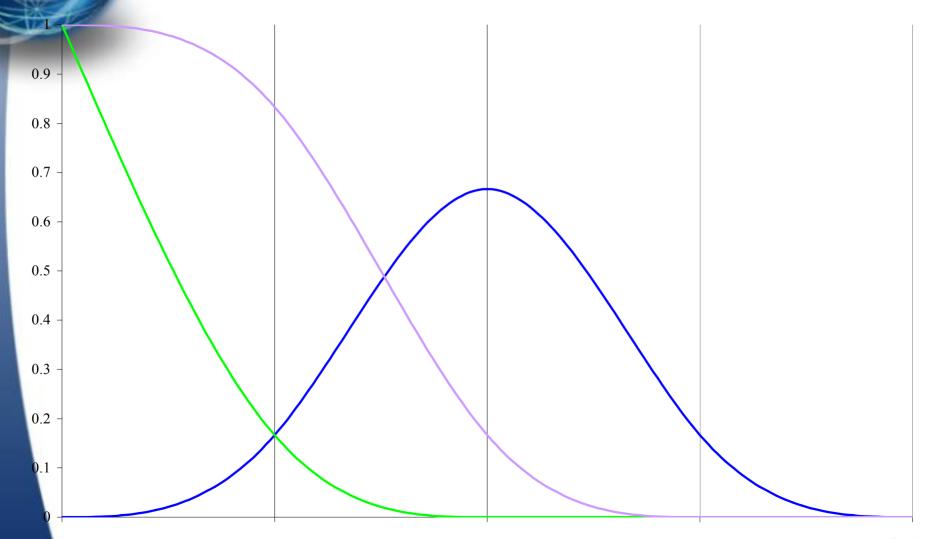




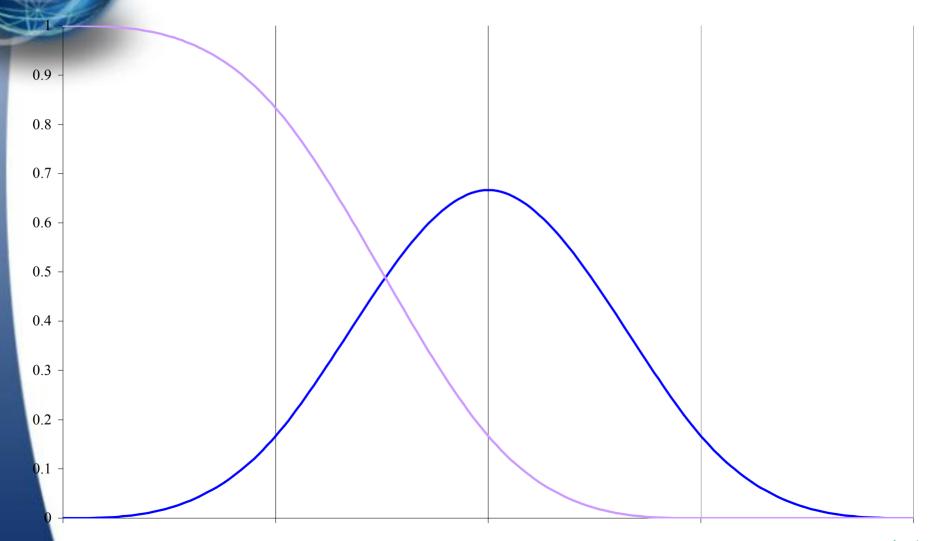
B-Splines – quadratic extrapolation



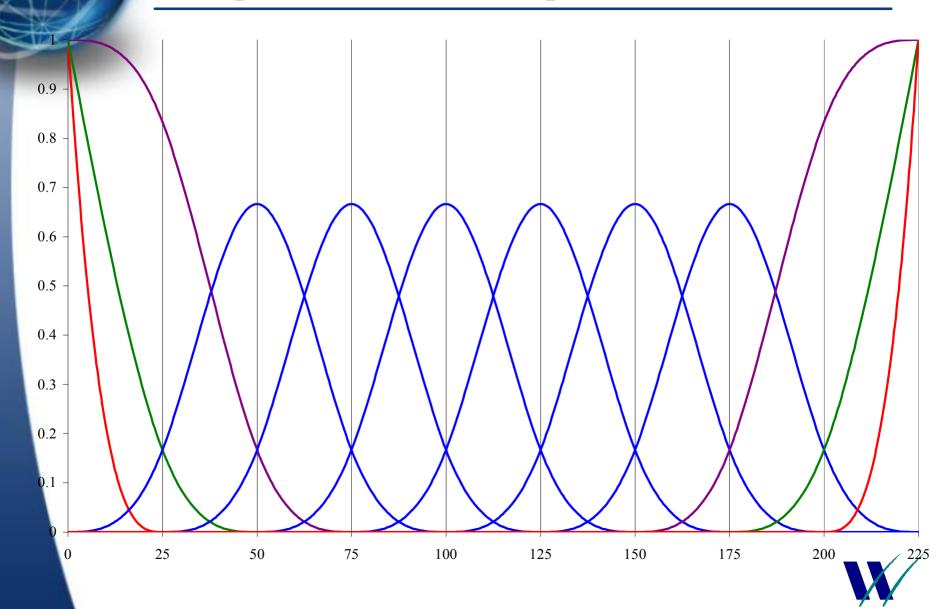
B-Splines – linear extrapolation



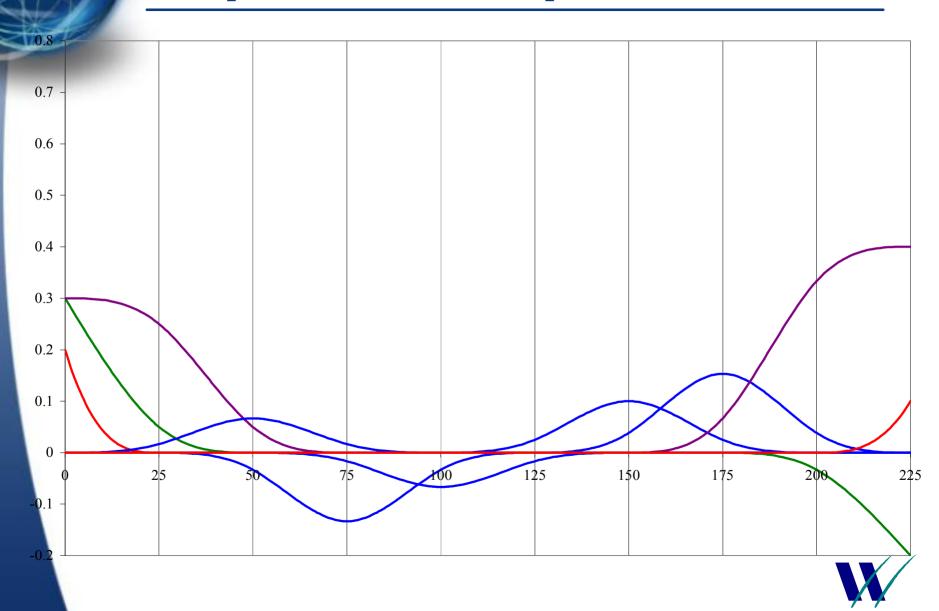
B-Splines – constant extrapolation



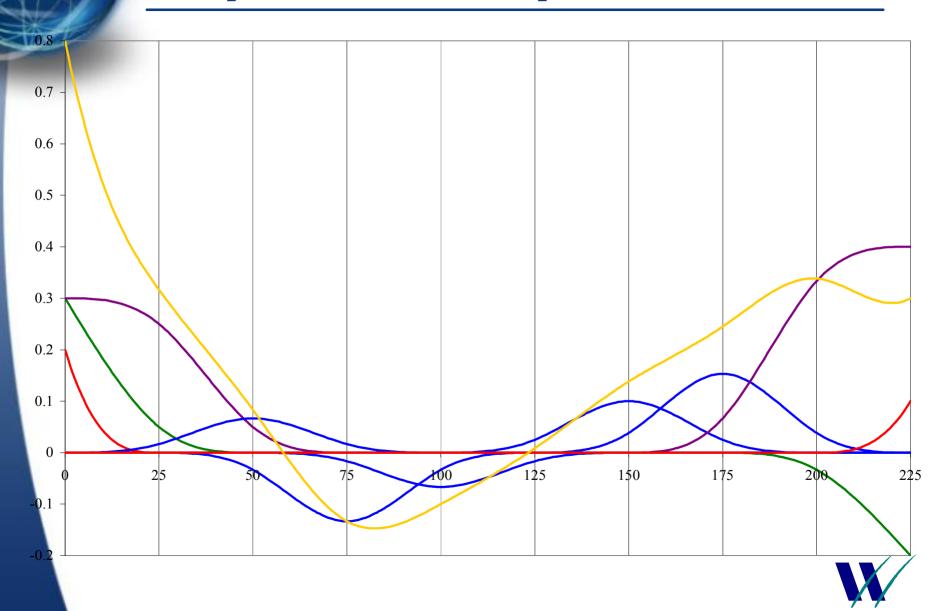
B-Splines - example

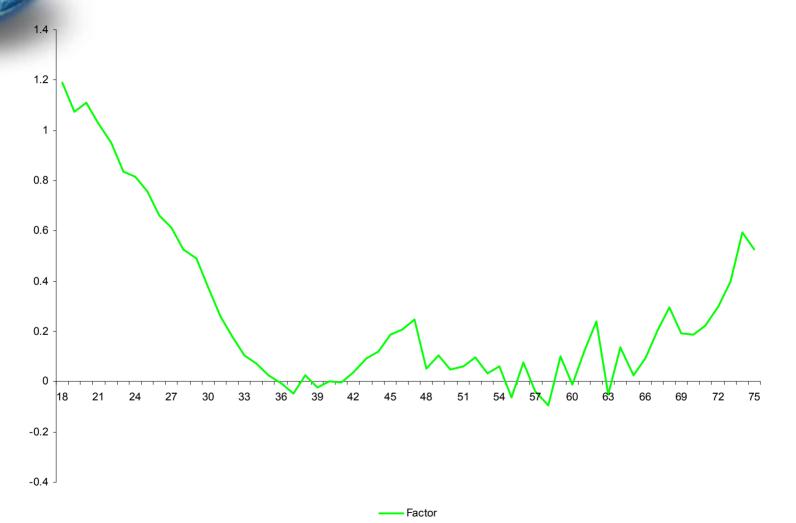


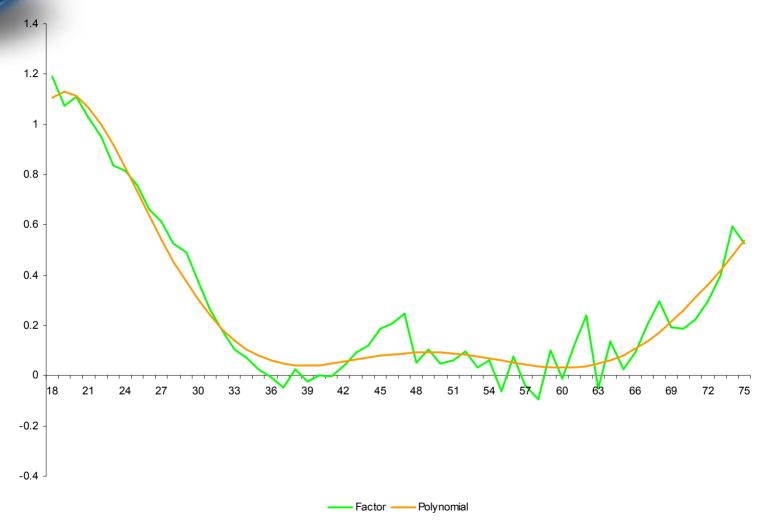
B-Splines – example

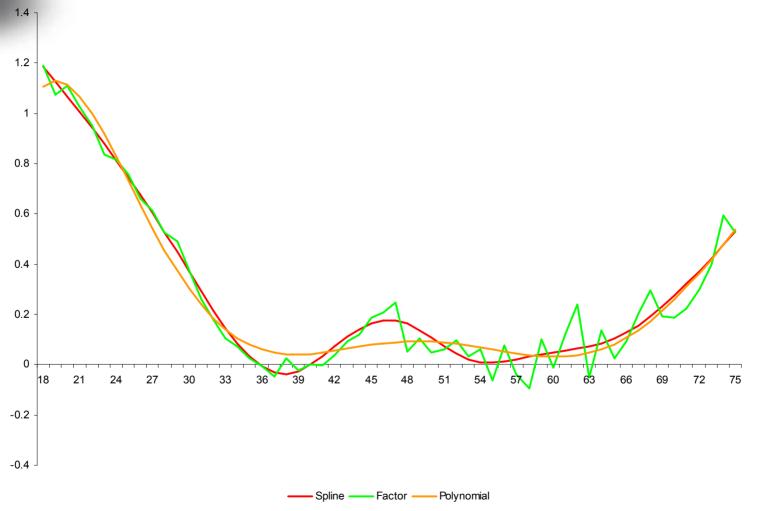


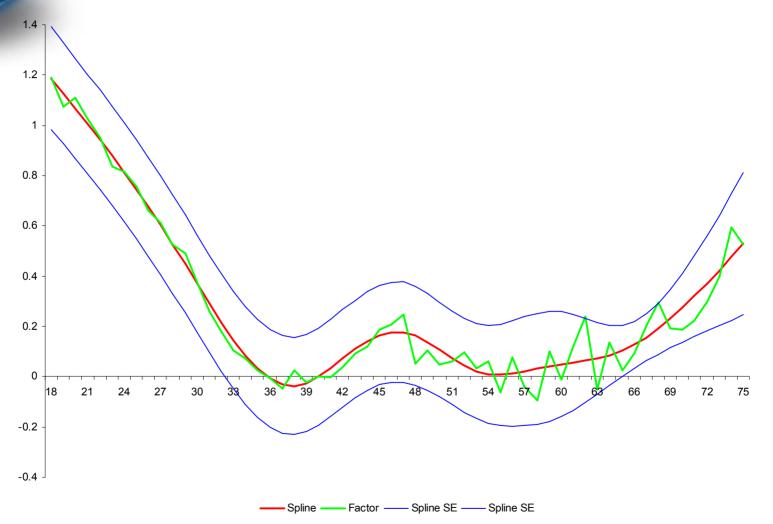
B-Splines - example

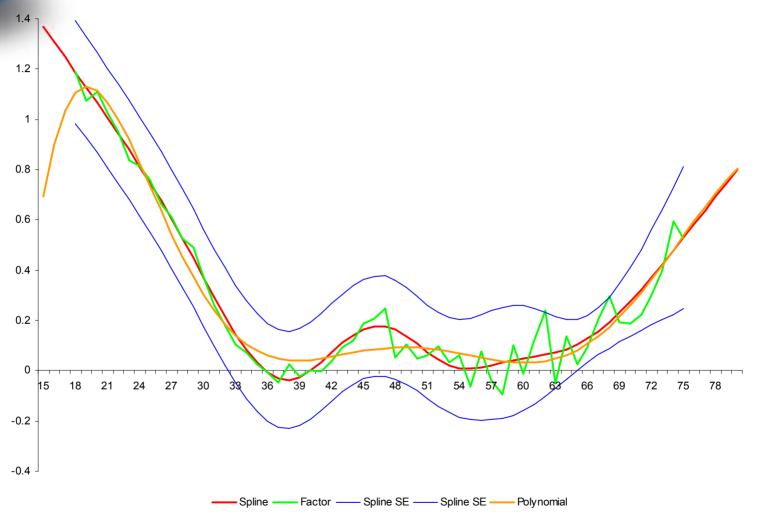




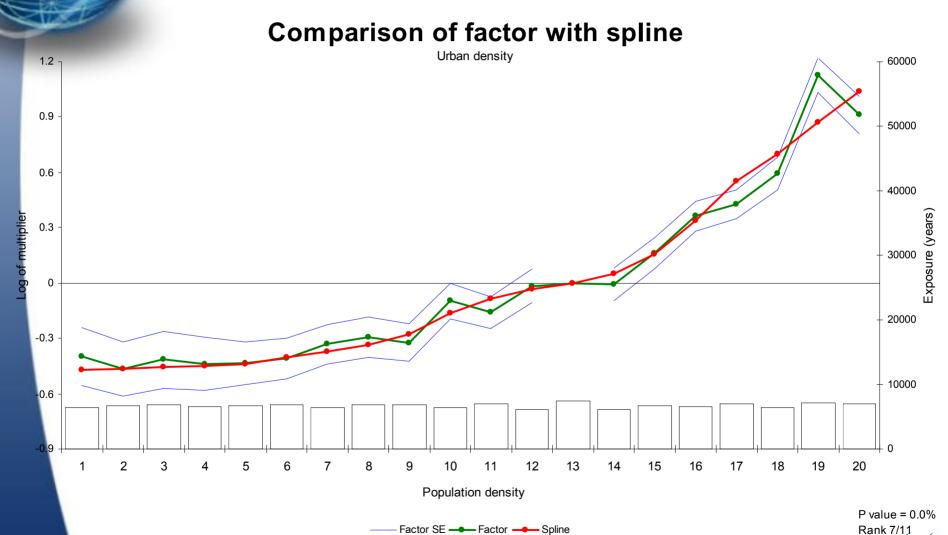




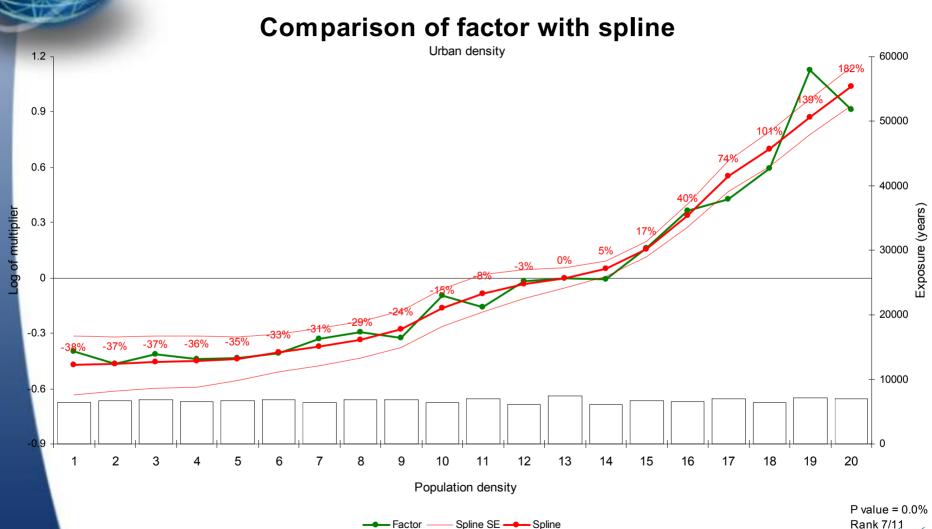




Further example



Further example



Knot placement

- Position of knots is important
- Equal width
 - B-splines symmetric
 - Knots may not fall on turning points
- Equal exposure
 - Concentrates knots in high volume segments
 - Can be poor fit at edges
- By eye
 - Can place knots near known turning points
 - Subjective

Splines

- Practical way of modelling continuous variables
- Often better than polynomials
- Increases complexity, therefore best used
 - when it is important that rates vary continuously with a variable
 - when modeling elasticity to be used in price optimization analyses

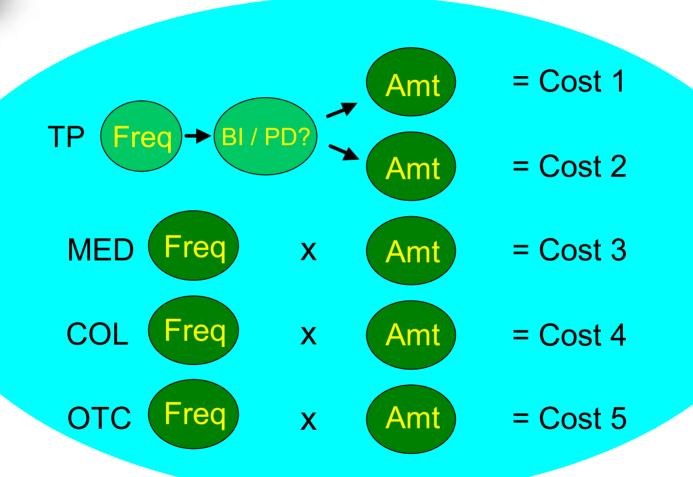
Agenda

- Introduction
- Testing the link function
- The Tweedie distribution
- Splines
- Reference models
- Aliasing / near aliasing
- Combining models across claim types
- Restricted models
- Model validation

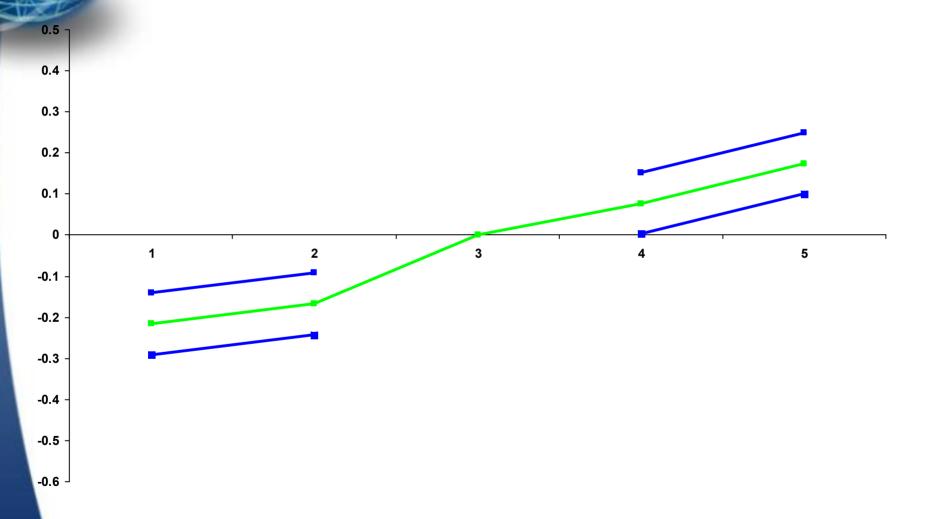
Standard approach



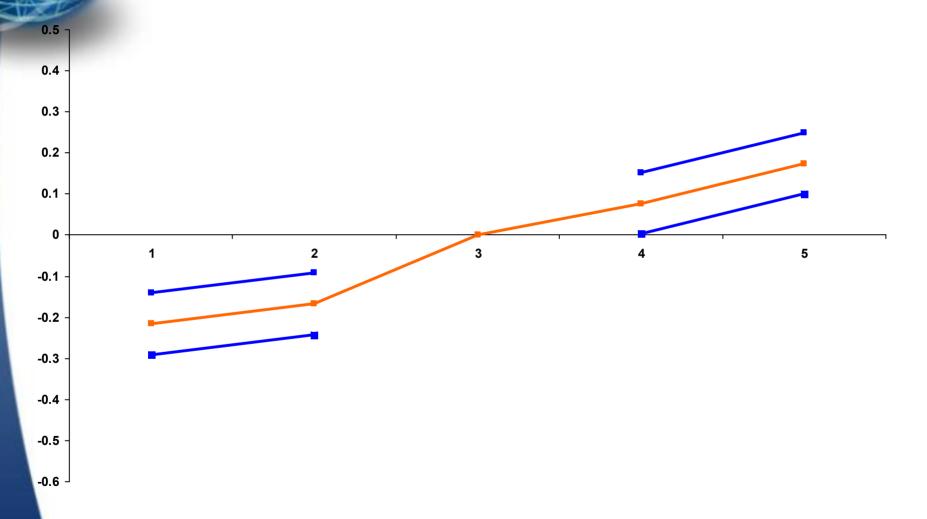
Binomial reference models



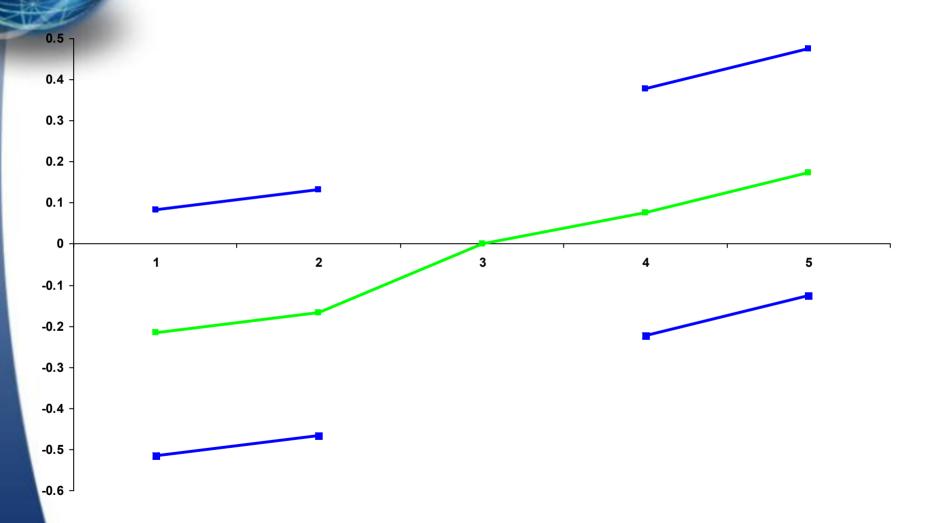
Offset reference model

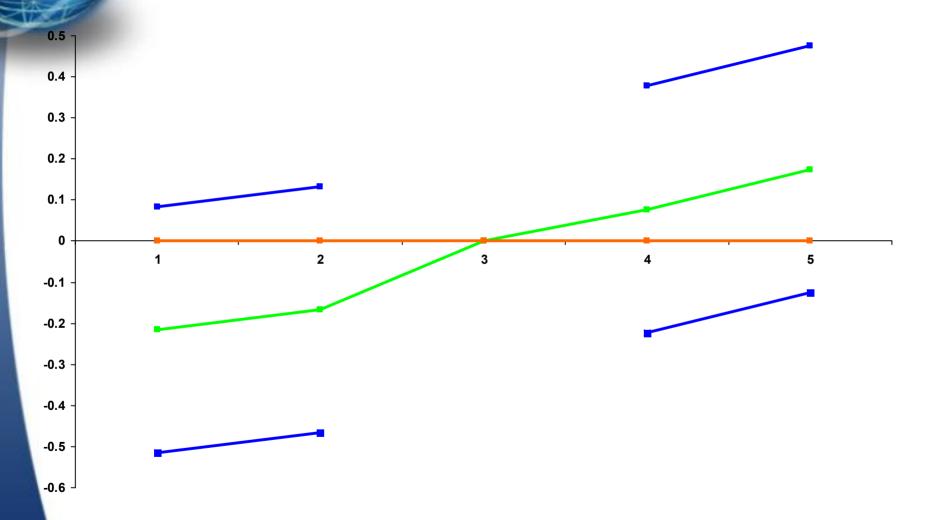


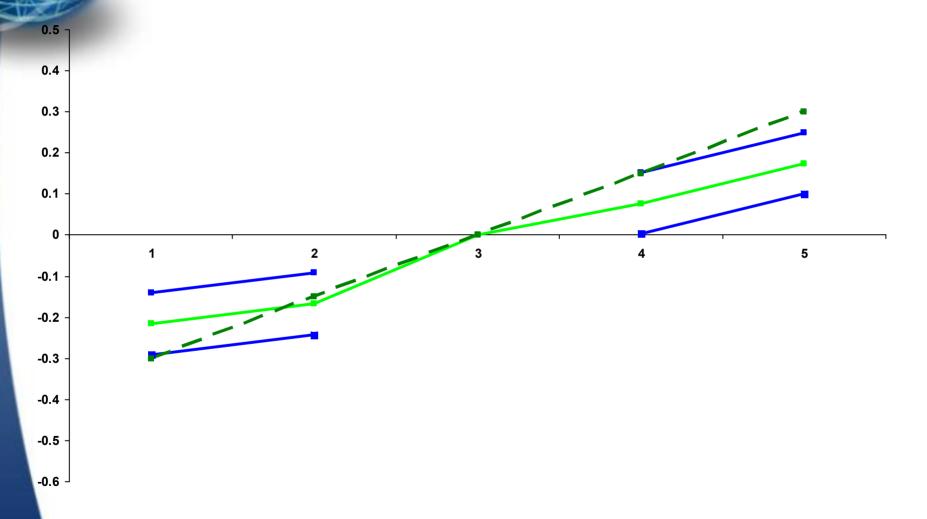
Offset reference model

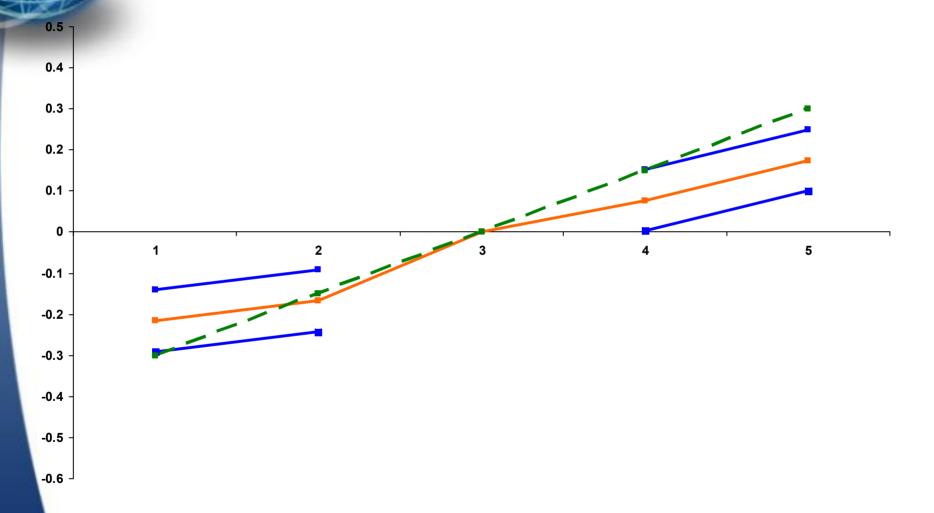


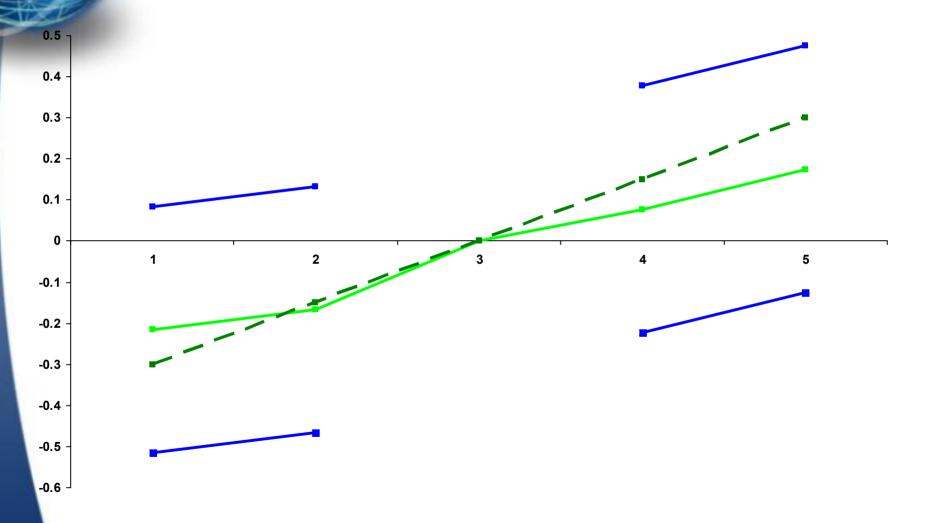
Offset reference model

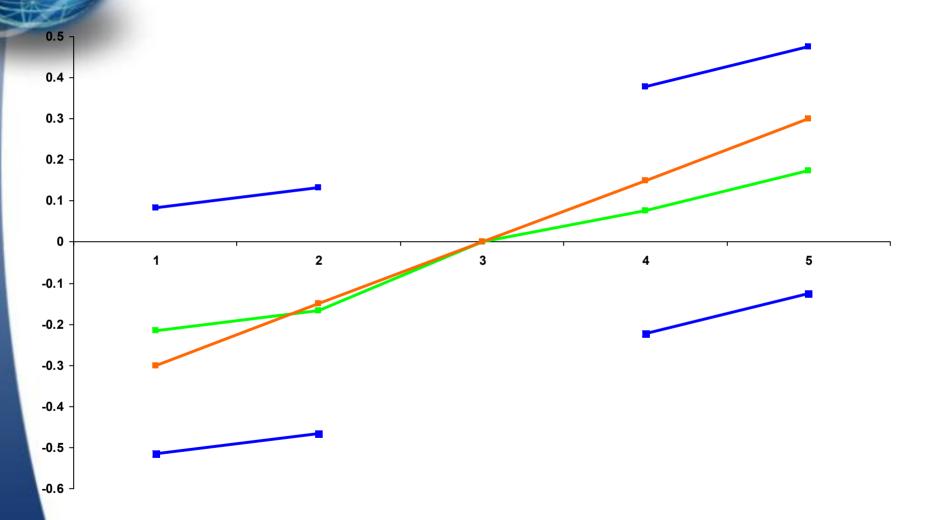




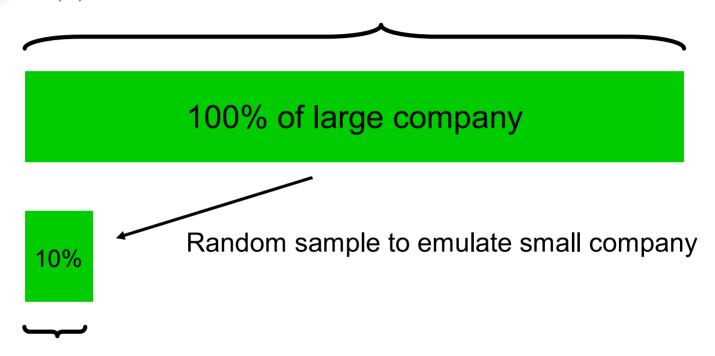






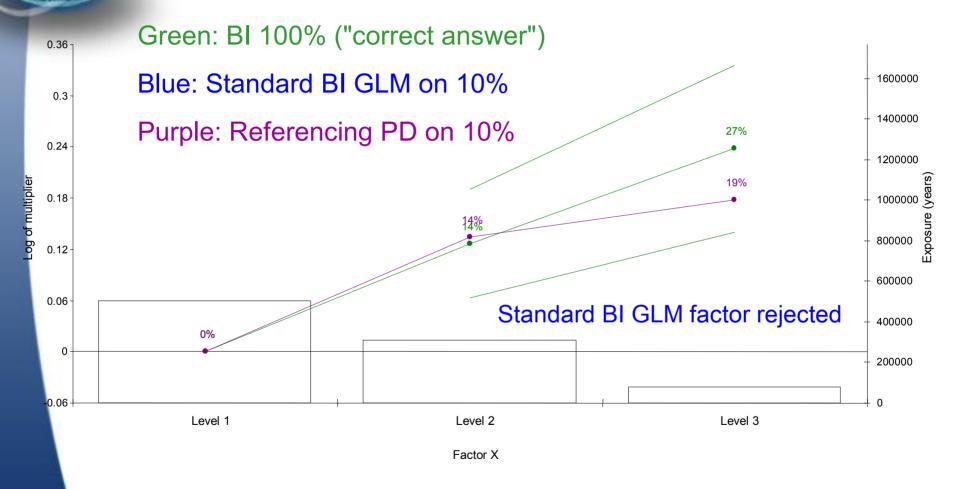


(1) Fit to BI claims on all data - the "correct answer"

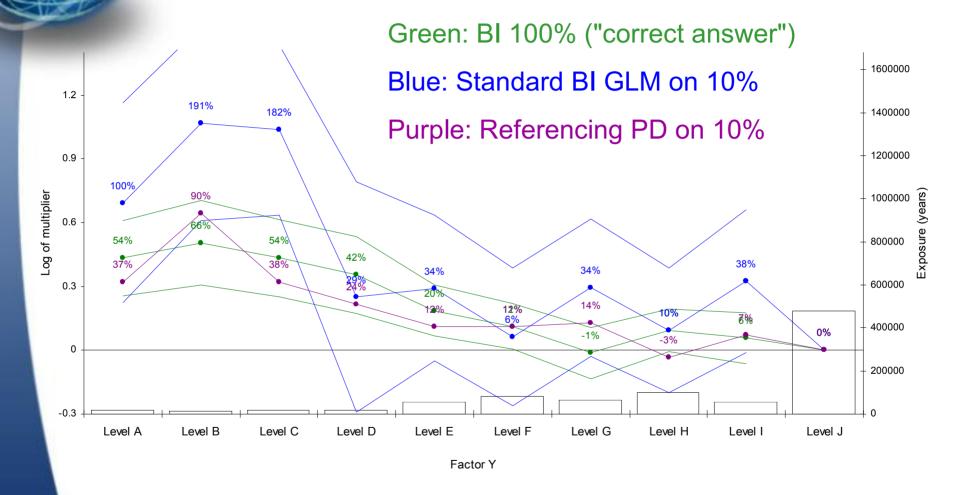


- (2) Model BI claims with standard approach
- (3) Model BI claims referencing PD experience on this small sample

Example of reference model method working



Example of reference model method working



Approx 2 s.e. from estimate - Full model — Unsmoothed estimate - Full model — Unsmoothed estimate - 10% model — Approx 2 s.e. from estimate - 10% model — PD model

Agenda

- Introduction
- Testing the link function
- The Tweedie distribution
- Splines
- Reference models
- Aliasing / near aliasing
- Combining models across claim types
- Restricted models
- Model validation

Aliasing and "near aliasing"

- Aliasing
 - the removal of unwanted redundant parameters
- Intrinsic aliasing
 - occurs by the design of the model
- Extrinsic aliasing
 - occurs "accidentally" as a result of the data

Example

Suppose we wanted a model of the form:

$$\underline{\mu} = \alpha + \beta_1$$
 if age < 30

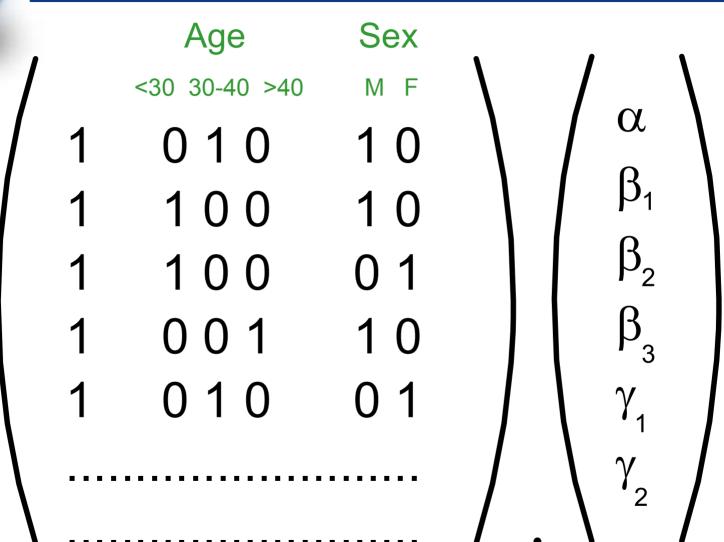
+
$$\beta_2$$
 if age 30 - 40

+
$$\beta_3$$
 if age > 40

+
$$\gamma_1$$
 if sex male

+
$$\gamma_2$$
 if sex female

Form of $X.\underline{\beta}$ in this case



Example

Suppose we wanted a model of the form:

$$\mu = \alpha + \beta_1 \text{ if } \underline{\text{age}} < 30$$

$$+ \beta_2 \text{ if } \underline{\text{age}} = 30 - 40$$

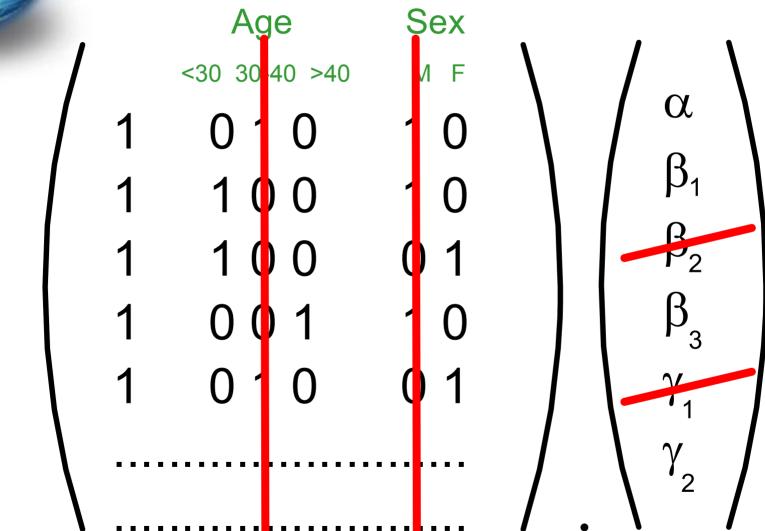
"Base levels"

+
$$\beta_3$$
 if age > 40

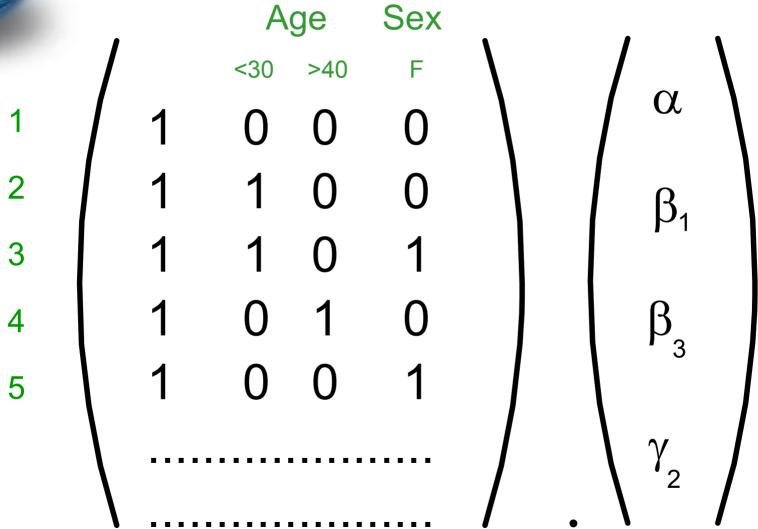
+
$$\gamma$$
 if sex male

+
$$\gamma_2$$
 if sex female

X.β having adjusted for base levels



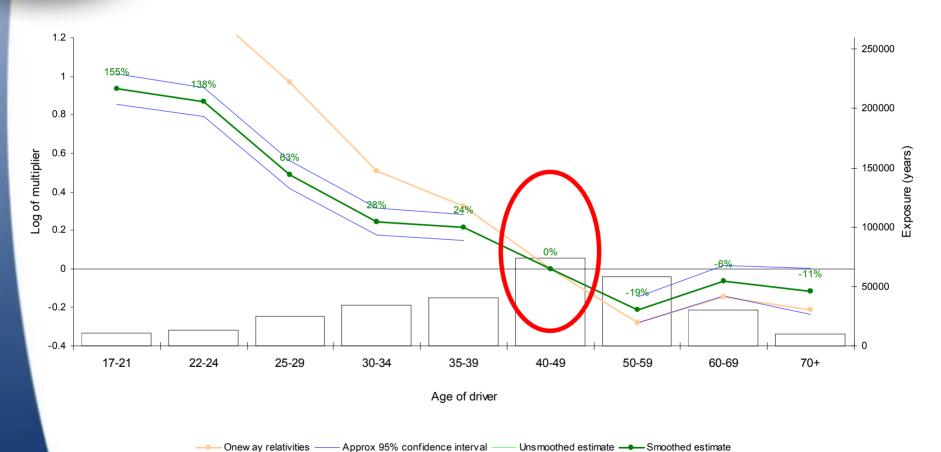
X.β having adjusted for base levels



Intrinsic aliasing

Example job

Run 16 Model 3 - Small interaction - Third party material damage, Numbers



Extrinsic aliasing

 If a perfect correlation exists, one factor can alias levels of another

Salastad base

Eg if doors declared first:

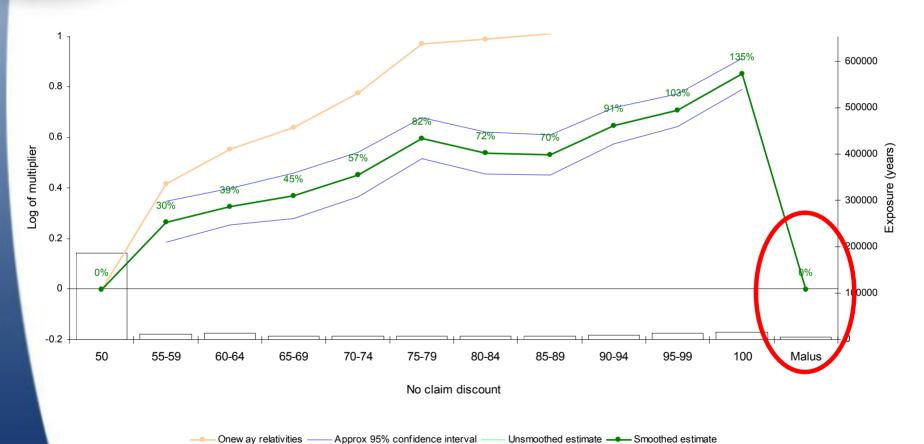
Exposure: # Doo Colour↓	3	Selected base	5 Unknown		
Selected base Red	13,234	12,343	13,432	13,432	0
Green	4,543	4,543	13,243	2,345	0
Blue	6,544	5,443	15,654	4,565	0
Black	4,643	1,235	14,565	4,545	0
Further aliasing Unknown	0	0	0	0	3,242

 This is the only reason the order of declaration can matter (fitted values are unaffected)

Extrinsic aliasing

Example job

Run 16 Model 3 - Small interaction - Third party material damage, Numbers



"Near aliasing"

If two factors are almost perfectly, but not quite aliased, convergence problems can result and/or results can become hard to interpret

	Selected base						
Exposure: # Doo Colour↓	ors→ 2	3	4	5 U	nknown		
Selected base Red	13,234	12,343	13,432	13,432	0		
Green	4,543	4,543	13,243	2,345	0		
Blue	6,544	5,443	15,654	4,565	0		
Black	4,643	1,235	14,565	4,545	2		
Unknown	0	0	0	0	3,242		

 Eg if the 2 black, unknown doors policies had no claims, GLM would try to estimate a very large negative number for unknown doors, and a very large positive number for unknown colour

"Near aliasing" - solution

- 1. Spot it
- 2. Fix the data!

Exposure Col	: # Door our↓	$rs \rightarrow 2$	3	4	5 Ui	nknown
	Red	13,234	12,343	13,432	13,432	0
(Green	4,543	4,543	13,243	2,345	0
	Blue	6,544	5,443	15,654	4,565	0
	Black	4,643	1,235	14,565	4,545	2
Unl	known	0	0	0	0	3,242

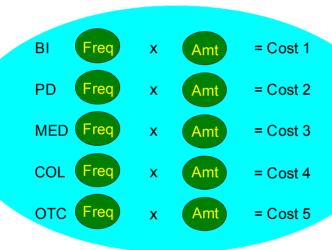
Agenda

- Introduction
- Testing the link function
- The Tweedie distribution
- Splines
- Reference models
- Aliasing / near aliasing
- Combining models across claim types
- Restricted models
- Model validation

Combining claim elements - I

- Multiply factors for frequencies and amounts
- Calculate risk premium as sum of claim elements

Combining claim elements - II



- Consider current exposure
- Calculate expected frequency and amount for each claim type for each record
- Combine to give expected total cost of claims for each record
- Fit model to this expected value

Calculation of risk premium

		TPPD	TPPD	TPBI	TPBI
		Numbers	Amounts	Numbers	Amounts
Intercept		32%	£1000	12%	£4860
Sex	Male	1.000	1.000	1.000	1.000
	Female	0.750	1.200	0.667	0.900
Area	Town	1.000	1.000	1.000	1.000
	Country	1.250	0.700	0.750	0.833

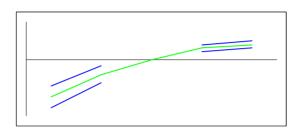
Policy	Sex	Area	WWNUM1	WWAMT1	WWNUM2	WWAMT2	WWCC1	WWCC2	WV	RSKPRM
									/	
82155654	М	Т	32%	1000	12%	4860	320	583.20		903.20
82168746	F	Т	24%	1200	8%	4374	288	349.92		637.92
82179481	М	С	40%	700	9%	4050	280	364.50		644.50
82186845	F	С	30%	840	6%	3645	252	218.70		470.70

Risk premium standard errors

- Risk premium model standard errors are small owing to the smoothness of the expected value
- It is possible to approximate standard error of risk premium parameter estimates based on standard errors of parameter estimates in underlying models
- Care needed in interpreting such approximations since they do not reflect model error, eg deciding to exclude a marginal factor

Risk premium standard errors - failings

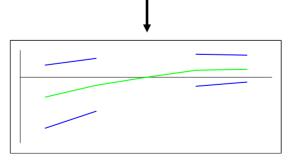
Numbers

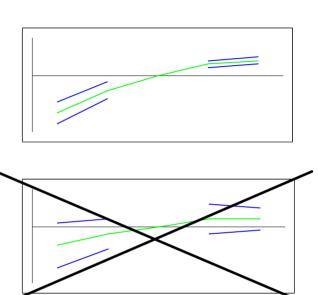


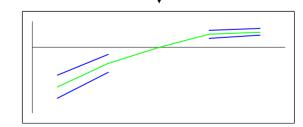
Amounts



Risk premium





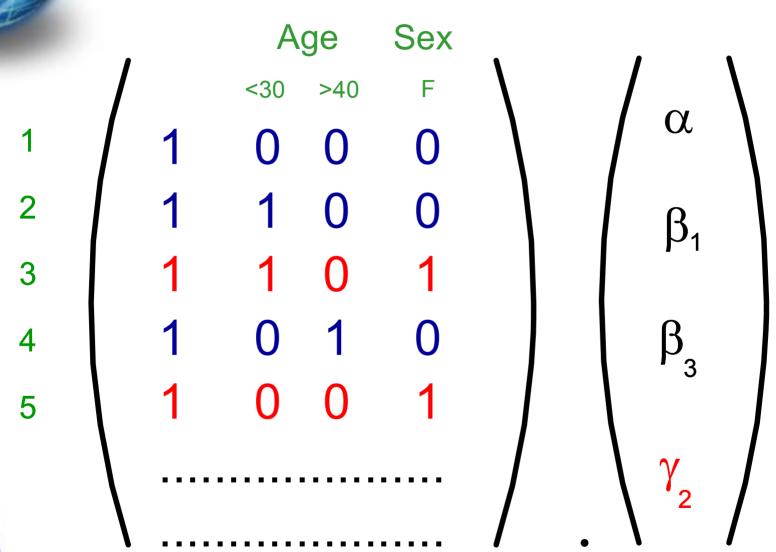


Agenda

- Introduction
- Testing the link function
- The Tweedie distribution
- Splines
- Reference models
- Aliasing / near aliasing
- Combining models across claim types
- Restricted models
- Model validation

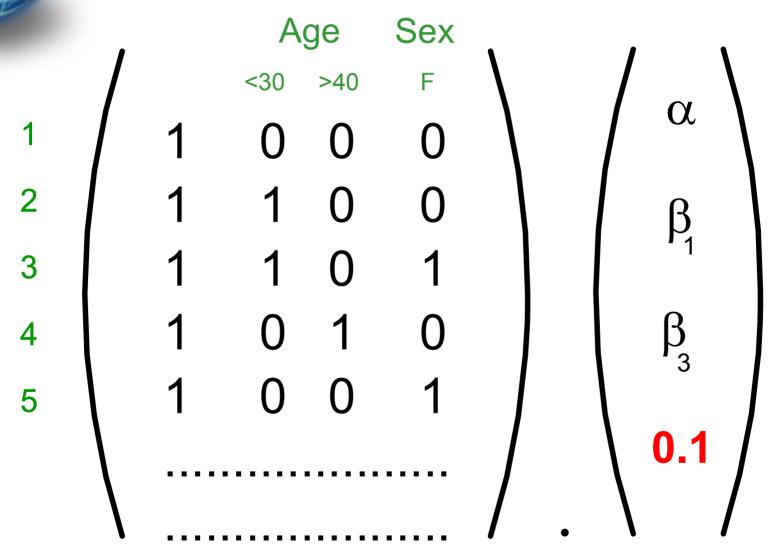
$$E[Y] = \mu = g^{-1}(X.\beta + \xi)$$
Offset

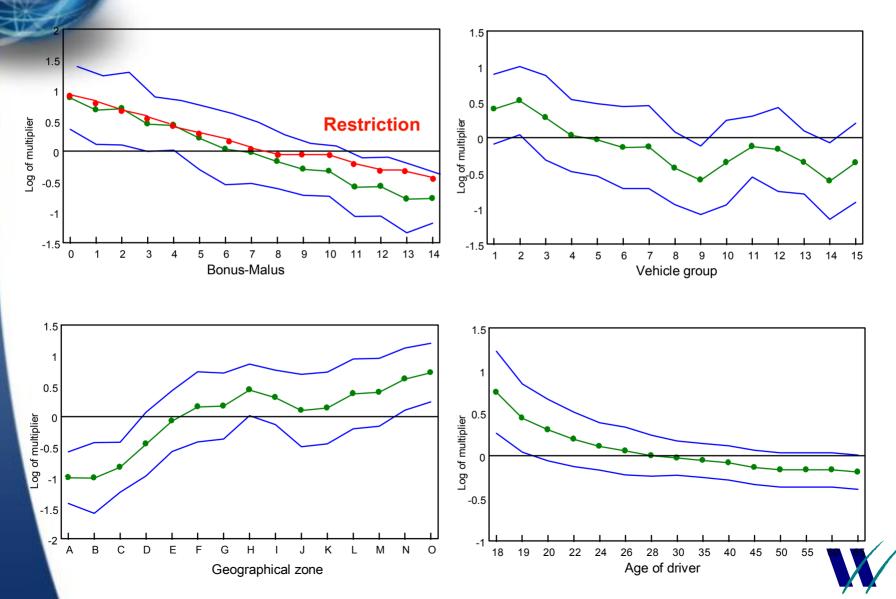
- Offset term used for known effects, eg exposure in a numbers model
- Can also be used to constrain model (eg claim free years / payment frequency / amount of cover)
- Other factors adjusted to compensate

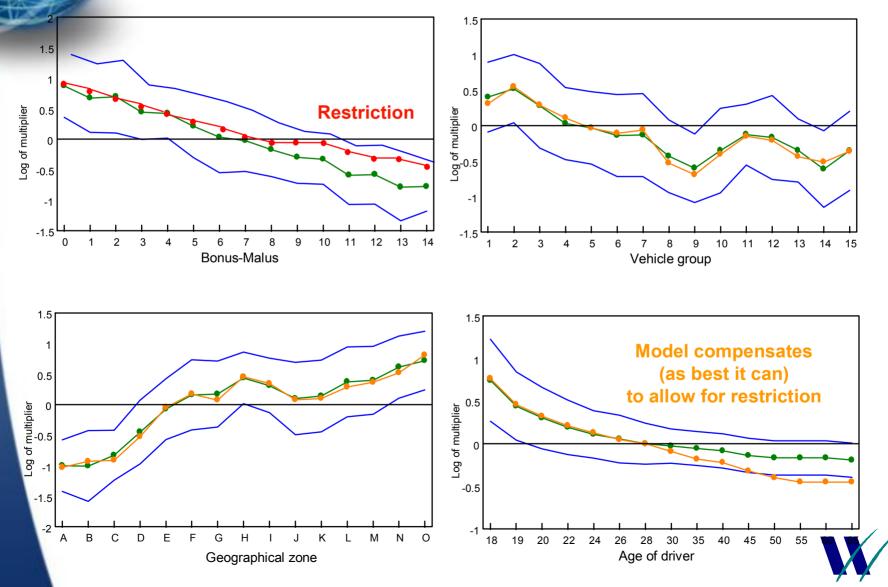


$$E[Y] = \mu = g^{-1}(X.\beta)$$

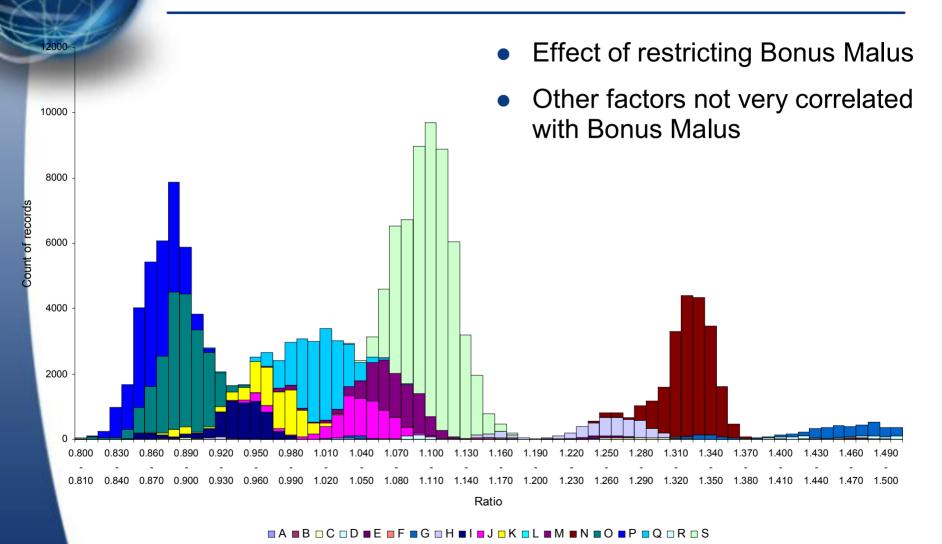
$$E[Y] = \underline{\mu} = g^{-1}(X.\underline{\beta} + \underline{\xi})$$



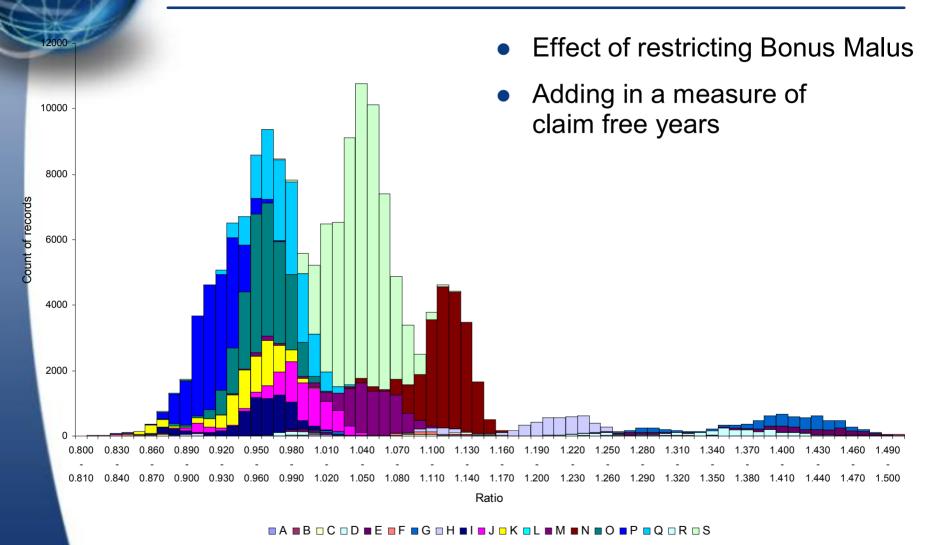




Testing the effectiveness of restrictions



Testing the effectiveness of restrictions



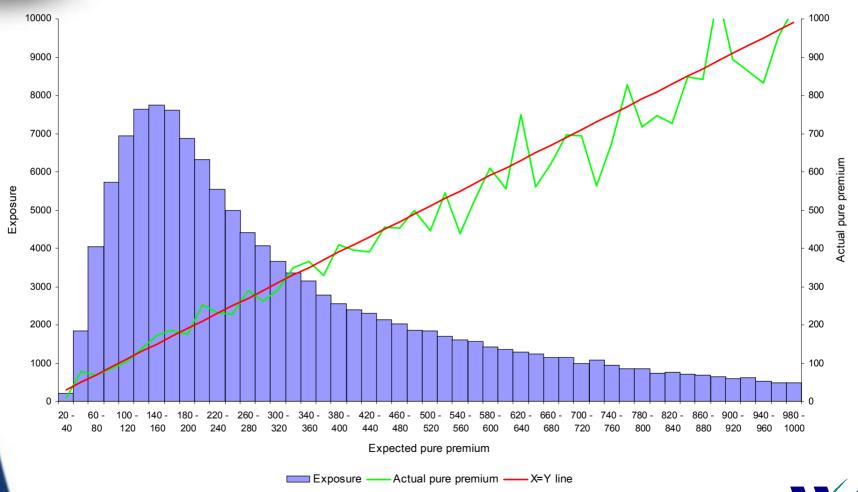
Restrictions

- Only use to "get around" restrictions
- A commercial smoothing is a commercial smoothing
- Apply at risk premium stage

Agenda

- Introduction
- Testing the link function
- The Tweedie distribution
- Splines
- Reference models
- Aliasing / near aliasing
- Combining models across claim types
- Restricted models
- Model validation

Model validation



Lift curves

