

## **Agenda**

- Introduction
- Testing the link function
- The Tweedie distribution
- Splines
- Reference models
- Aliasing / near aliasing
- Combining models across claim types
- Restricted models
- Model validation



## "A Practitioner's Guide to GLMs"

- 2004 CAS Discussion Paper Program
- Discusses
  - testing the link function
  - the Tweedie distribution
  - aliasing / near aliasing
  - combining models across claim types
  - restricted models
- Copies available here



$$E[Y_i] = \mu_i = g^{-1}(\Sigma X_{ij}\beta_j + \xi_i)$$

$$Var[Y_i] = \phi.V(\mu_i)/\omega_i$$

- Consider all factors simultaneously
- Provide statistical diagnostics
- Allow for nature of random process
- Robust and transparent
- Increasingly a global industry standard



$$E[\underline{Y}] = \underline{\mu} = g^{-1}(\mathbf{X}.\underline{\beta} + \underline{\xi})$$

$$Var[\underline{Y}] = \phi.V(\underline{\mu})/\underline{\omega}$$



$$E[Y] = \mu = g^{-1}(X \cdot \beta + \xi)$$
Link function

Y-variate

Design matrix

Parameter estimates



$$E[\underline{Y}] = \underline{\mu} = g^{-1}(\mathbf{X}.\underline{\beta} + \underline{\xi})$$

Some function (user defined)

Observed thing (data)

Some matrix based on data (user defined)

Parameters
to be
estimated
(the answer!)



Known

effects

Var[Y] = 
$$\phi$$
.V( $\mu$ )/ $\omega$ 
Prior weights
Scale parameter

Variance function

- Usually assume exponential family, eg
- $\phi = \sigma^2$  (estimated),  $V(x) = 1 \implies Var[Y_i] = \sigma^2$  Normal
- $\phi = 1$  (specified),  $V(x) = x \Rightarrow Var[Y_i] = \mu_i$  Poisson
- $\phi = k$  (estimated),  $V(x) = x^2 \Rightarrow Var[Y_i] = k\mu_i^2$  Gamma



## **Agenda**

- Introduction
- Testing the link function
- The Tweedie distribution
- Splines
- Reference models
- Aliasing / near aliasing
- Combining models across claim types
- Restricted models
- Model validation



## Offset ξ

Link function g(x)

**Linear Predictor Form** 

$$\mathbf{X} \cdot \underline{\beta} = \alpha_i + \beta_j + \gamma_k + \delta_l$$

Data

Y

Error Structure  $V(\underline{\mu})$ 

Scale Parameter

Prior Weights

**Numerical MLE** 

Parameter Estimates

**Diagnostics** 



## **Model testing**

- Use only those factors which are predictive
  - standard errors of parameter estimates
  - F tests /  $\chi^2$  tests on deviances
  - stepwise approach (helpful if used with care)
  - consistency over time
  - human intuition
- Make sure the model is reasonable
  - variance function: residual plots(histograms / Q-Q / residual vs fitted value etc)
  - outliers: leverage / Cook's distance
  - link function: Box-Cox



## **Box-Cox link function investigation**

GLM structure is

$$E[\underline{Y}] = \underline{\mu} = g^{-1}(\mathbf{X}.\underline{\beta} + \underline{\xi}) \quad Var[\underline{Y}] = \phi.V(\underline{\mu}) / \underline{\omega}$$

- Box Cox transforms defines  $g(x) = (x^{\lambda} 1) / \lambda$  for  $\lambda \neq 0$ ,  $\ln(x)$  for  $\lambda = 0$
- $\lambda = 1 \Rightarrow g(x) = x 1 \Rightarrow additive$  (with base level shift)
- $\lambda \to 0 \Rightarrow g(x) \to ln(x) \Rightarrow multiplicative$  (via maths)
- $\lambda = -1 \Rightarrow g(x) = 1 1/x \Rightarrow inverse$  (with base level shift)
- Try different values of  $\lambda$  and measure goodness of fit to see which fits experience best



## **Box-Cox link function investigation**Auto third party property damage frequencies





## **Box-Cox link function investigation Auto third party property damage average amounts**





## **Box-Cox link function investigation**Comparing fitted values of different link functions





## **Agenda**

- Introduction
- Testing the link function
- The Tweedie distribution
- Splines
- Reference models
- Aliasing / near aliasing
- Combining models across claim types
- Restricted models
- Model validation



## **Tweedie distributions**

- Incurred losses have a point mass at zero and then a continuous distribution
- Poisson and gamma not suited to this



$$f_{Y}(y;\theta,\lambda,\alpha) = \sum_{n=1}^{\infty} \frac{\left\{ (\lambda \omega)^{1-\alpha} \kappa_{\alpha} (-1/y) \right\}^{n}}{\Gamma(-n\alpha)n! y} \cdot \exp\left\{ \lambda \omega [\theta_{0} y - \kappa_{\alpha}(\theta_{0})] \right\} \quad \text{for } y > 0$$

$$p(Y=0) = \exp\{-\lambda \omega \kappa_{\alpha}(\theta_0)\}$$



## **Tweedie distributions**

Tweedie: 
$$\phi = k$$
,  $V(x) = x^p \Rightarrow Var[\underline{Y}] = k\underline{\mu}^p$ 

- p=1 corresponds to Poisson, p=2 to gamma
- Defines a valid distribution for p<0, 1<p<2, p>2
- Can be considered as Poisson/gamma process for 1<p<2</li>
- Need to estimate both k and p when fitting models
   often estimate a where p = (2-a)/(1-a)
- Typical values of p for insurance incurred claims around, or just under, 1.5



## **Example 1: frequency**

#### Comparison of Tweedie model with traditional frequency/amounts approach

Run 7 Model 2 - Frequency



P value = 0.0% Rank 12/12



Onew ay relativities —— Approx 95% confidence interval —— Unsmoothed estimate —— Smoothed estimate

## **Example 1: amounts**

#### Comparison of Tweedie model with traditional frequency/amounts approach

Run 7 Model 6 - Amounts



**EXCLUDED FACTOR** 

Oneway relativities —— Approx 95% confidence interval —— Unsmoothed estimate —— Smoothed estimate

P value = 50.9% Rank 4/12



# **Example 1:** traditional RP vs Tweedie

#### Comparison of Tweedie model with traditional frequency/amounts approach

Run 11 Model 2 - Tweedie Models





## **Example 2: frequency**

#### Comparison of Tweedie model with traditional frequency/amounts approach

Run 7 Model 1 - Frequency



P value = 0.0% Rank 12/12



## **Example 2: amounts**

#### Comparison of Tweedie model with traditional frequency/amounts approach

Run 7 Model 5 - Amounts



P value = 0.0% Rank 5/7



Onew ay relativities —— Approx 95% confidence interval —— Unsmoothed estimate —— Smoothed estimate

# **Example 2:** traditional RP vs Tweedie

#### Comparison of Tweedie model with traditional frequency/amounts approach

Run 11 Model 1 - Tweedie Models





# **Example 3:** traditional RP vs Tweedie

#### Comparison of Tweedie model with traditional frequency/amounts approach

Run 11 Model 1 - Tweedie Models





## **Example 4: frequency**

#### Comparison of Tweedie model with traditional frequency/amounts approach

Run 7 Model 1 - Frequency



Unsmoothed estimate —— Smoothed estimate

Approx 95% confidence interval

Rank 5/12



Onew ay relativities

## **Example 4: amounts**

#### Comparison of Tweedie model with traditional frequency/amounts approach

Run 7 Model 5 - Amounts



EXCLUDED FACTOR —— Onew ay relativities —— Approx 95% confidence interval —— Unsmoothed estimate —— Smoothed estimate

P value = 50.6% Rank 4/9



## **Example 4:** traditional RP vs Tweedie

#### Comparison of Tweedie model with traditional frequency/amounts approach

Run 11 Model 1 - Tweedie Models





## **Agenda**

- Introduction
- Testing the link function
- The Tweedie distribution
- Splines
- Reference models
- Aliasing / near aliasing
- Combining models across claim types
- Restricted models
- Model validation



## **Spline definition**

 A series of polynomial functions, with each function defined over a short interval



- Intervals are defined by k+2 knots
  - two exterior knots at extremes of data
  - variable number (k) of interior knots
- At each interior knot the two functions must join "smoothly"

## **Cubic splines**

- Each polynomial is a cubic
  - $a + bx + cx^2 + dx^3$
- "Smoothness" at interior knots is defined as:
  - continuous
  - continuous first derivative
  - continuous second derivative



## **Regression splines**

- The position of the knots is specified by the user
- Standard GLMs can be used by careful definition of variates
- Pros
  - fits easily into existing structures
  - no complex resampling needed

- Cons
  - position of knots can effect final answer



## **Smoothing splines**

- One knot at each unique data value
- Additional curvature penalty prevents over fitting
- Curvature penalty selected by repeatedly sampling subsets and optimising generalised goodness of fit measure such as AIC
- Pros
  - allows data to guide final result
- Cons
  - 100s of knots required
  - optimisation process is time-consuming
  - difficult to produce new fitted values

## "Easy" regression splines

- Fit a cubic over the whole range
  - simply define x, x<sup>2</sup> and x<sup>3</sup> as variates and include in the model
- Fit additional cubic "correction" variates for each interval, defined as
  - -0 if  $x < k_r$
  - $-((x k_r)/(k_{r+1} k_r))^3$  otherwise



## "Easy" regression splines



## "Easy" regression splines















- "Correction" variates get large quickly
- In practice GLM process can struggle with these large numbers
- Alternate basis is clearly desirable so that:
  - underlying variate remains small for all possible values of x
  - easy to impose additional edge constraints (linear or constant extrapolation is desirable)



- Set of basis functions usually covering four segments (defined by five knots)
- Each function is itself a cubic spline



 Each basis function has the same shape, except for the three basis functions at each extreme which occupy fewer than four segments





































## **B-Splines – quadratic extrapolation**





### **B-Splines** – linear extrapolation





### **B-Splines – constant extrapolation**





## **B-Splines - example**



## **B-Splines – example**



## **B-Splines - example**























## **Further example**



## **Further example**



## **Knot placement**

- Position of knots is important
- Equal width
  - B-splines symmetric
  - Knots may not fall on turning points
- Equal exposure
  - Concentrates knots in high volume segments
  - Can be poor fit at edges
- By eye
  - Can place knots near known turning points
  - Subjective



### **Splines**

- Practical way of modelling continuous variables
- Often better than polynomials
- Increases complexity, therefore best used
  - when it is important that rates vary continuously with a variable
  - when modeling elasticity to be used in price optimization analyses



### **Agenda**

- Introduction
- Testing the link function
- The Tweedie distribution
- Splines
- Reference models
- Aliasing / near aliasing
- Combining models across claim types
- Restricted models
- Model validation



### Standard approach





#### **Binomial reference models**





#### Offset reference model





### Offset reference model





#### Offset reference model



























(1) Fit to BI claims on all data - the "correct answer"



- (2) Model BI claims with standard approach
- (3) Model BI claims referencing PD experience on this small sample



## **Example of reference model** method working





## Example of reference model method working



Approx 2 s.e. from estimate - Full model — Unsmoothed estimate - Full model — Unsmoothed estimate - 10% model — Approx 2 s.e. from estimate - 10% model — PD model



### **Agenda**

- Introduction
- Testing the link function
- The Tweedie distribution
- Splines
- Reference models
- Aliasing / near aliasing
- Combining models across claim types
- Restricted models
- Model validation



## **Aliasing and "near aliasing"**

- Aliasing
  - the removal of unwanted redundant parameters
- Intrinsic aliasing
  - occurs by the design of the model
- Extrinsic aliasing
  - occurs "accidentally" as a result of the data



#### **Example**

Suppose we wanted a model of the form:

$$\underline{\mu} = \alpha + \beta_1$$
 if age < 30

+ 
$$\beta_2$$
 if age 30 - 40

+ 
$$\beta_3$$
 if age > 40

+ 
$$\gamma_1$$
 if sex male

+ 
$$\gamma_2$$
 if sex female



## Form of $X.\underline{\beta}$ in this case





#### **Example**

Suppose we wanted a model of the form:

$$\mu = \alpha + \beta_1 \text{ if } \underline{\text{age}} < 30$$

$$+ \beta_2 \text{ if } \underline{\text{age}} = 30 - 40$$

"Base levels"

+ 
$$\beta_3$$
 if age > 40

+ 
$$\gamma$$
 if sex male

+ 
$$\gamma_2$$
 if sex female



### **X.**β having adjusted for base levels





## **X.**β having adjusted for base levels





## Intrinsic aliasing

#### Example job

Run 16 Model 3 - Small interaction - Third party material damage, Numbers





### **Extrinsic aliasing**

 If a perfect correlation exists, one factor can alias levels of another

Salastad base

Eg if doors declared first:

| Exposure: # Doo<br>Colour↓ | 3      | Selected base | 5 Unknown |        |       |
|----------------------------|--------|---------------|-----------|--------|-------|
| Selected base Red          | 13,234 | 12,343        | 13,432    | 13,432 | 0     |
| Green                      | 4,543  | 4,543         | 13,243    | 2,345  | 0     |
| Blue                       | 6,544  | 5,443         | 15,654    | 4,565  | 0     |
| Black                      | 4,643  | 1,235         | 14,565    | 4,545  | 0     |
| Further aliasing Unknown   | 0      | 0             | 0         | 0      | 3,242 |

 This is the only reason the order of declaration can matter (fitted values are unaffected)



## **Extrinsic aliasing**

#### Example job

Run 16 Model 3 - Small interaction - Third party material damage, Numbers





## "Near aliasing"

If two factors are almost perfectly, but not quite aliased, convergence problems can result and/or results can become hard to interpret

|                            | Selected base |        |        |        |        |  |  |
|----------------------------|---------------|--------|--------|--------|--------|--|--|
| Exposure: # Doo<br>Colour↓ | ors→ 2        | 3      | 4      | 5 U    | nknown |  |  |
| Selected base Red          | 13,234        | 12,343 | 13,432 | 13,432 | 0      |  |  |
| Green                      | 4,543         | 4,543  | 13,243 | 2,345  | 0      |  |  |
| Blue                       | 6,544         | 5,443  | 15,654 | 4,565  | 0      |  |  |
| Black                      | 4,643         | 1,235  | 14,565 | 4,545  | 2      |  |  |
| Unknown                    | 0             | 0      | 0      | 0      | 3,242  |  |  |

 Eg if the 2 black, unknown doors policies had no claims, GLM would try to estimate a very large negative number for unknown doors, and a very large positive number for unknown colour

## "Near aliasing" - solution

- 1. Spot it
- 2. Fix the data!

| Exposure Col | : # Door<br>our↓ | $rs \rightarrow 2$ | 3      | 4      | 5 Ui   | nknown |
|--------------|------------------|--------------------|--------|--------|--------|--------|
|              | Red              | 13,234             | 12,343 | 13,432 | 13,432 | 0      |
| (            | Green            | 4,543              | 4,543  | 13,243 | 2,345  | 0      |
|              | Blue             | 6,544              | 5,443  | 15,654 | 4,565  | 0      |
|              | Black            | 4,643              | 1,235  | 14,565 | 4,545  | 2      |
| Unl          | known            | 0                  | 0      | 0      | 0      | 3,242  |



### **Agenda**

- Introduction
- Testing the link function
- The Tweedie distribution
- Splines
- Reference models
- Aliasing / near aliasing
- Combining models across claim types
- Restricted models
- Model validation



## Combining claim elements - I

- Multiply factors for frequencies and amounts
- Calculate risk premium as sum of claim elements



### **Combining claim elements - II**



- Consider current exposure
- Calculate expected frequency and amount for each claim type for each record
- Combine to give expected total cost of claims for each record
- Fit model to this expected value



## **Calculation of risk premium**

|           |         | TPPD    | TPPD    | TPBI    | TPBI    |
|-----------|---------|---------|---------|---------|---------|
|           |         | Numbers | Amounts | Numbers | Amounts |
| Intercept |         | 32%     | £1000   | 12%     | £4860   |
| Sex       | Male    | 1.000   | 1.000   | 1.000   | 1.000   |
|           | Female  | 0.750   | 1.200   | 0.667   | 0.900   |
| Area      | Town    | 1.000   | 1.000   | 1.000   | 1.000   |
|           | Country | 1.250   | 0.700   | 0.750   | 0.833   |

| Policy   | Sex | Area | WWNUM1 | WWAMT1 | WWNUM2 | WWAMT2 | WWCC1 | WWCC2  | WV | RSKPRM |
|----------|-----|------|--------|--------|--------|--------|-------|--------|----|--------|
|          |     |      |        |        |        |        |       |        | /  |        |
| 82155654 | М   | Т    | 32%    | 1000   | 12%    | 4860   | 320   | 583.20 |    | 903.20 |
| 82168746 | F   | Т    | 24%    | 1200   | 8%     | 4374   | 288   | 349.92 |    | 637.92 |
| 82179481 | М   | С    | 40%    | 700    | 9%     | 4050   | 280   | 364.50 |    | 644.50 |
| 82186845 | F   | С    | 30%    | 840    | 6%     | 3645   | 252   | 218.70 |    | 470.70 |
|          |     |      |        |        |        |        |       |        |    |        |

#### Risk premium standard errors

- Risk premium model standard errors are small owing to the smoothness of the expected value
- It is possible to approximate standard error of risk premium parameter estimates based on standard errors of parameter estimates in underlying models
- Care needed in interpreting such approximations since they do not reflect model error, eg deciding to exclude a marginal factor



# Risk premium standard errors - failings

**Numbers** 



**Amounts** 



Risk premium









## **Agenda**

- Introduction
- Testing the link function
- The Tweedie distribution
- Splines
- Reference models
- Aliasing / near aliasing
- Combining models across claim types
- Restricted models
- Model validation



$$E[Y] = \mu = g^{-1}(X.\beta + \xi)$$
Offset

- Offset term used for known effects, eg exposure in a numbers model
- Can also be used to constrain model (eg claim free years / payment frequency / amount of cover)
- Other factors adjusted to compensate







$$E[Y] = \mu = g^{-1}(X.\beta)$$



$$E[Y] = \underline{\mu} = g^{-1}(X.\underline{\beta} + \underline{\xi})$$











## **Testing the effectiveness of restrictions**





## **Testing the effectiveness of restrictions**





#### Restrictions

- Only use to "get around" restrictions
- A commercial smoothing is a commercial smoothing
- Apply at risk premium stage



### **Agenda**

- Introduction
- Testing the link function
- The Tweedie distribution
- Splines
- Reference models
- Aliasing / near aliasing
- Combining models across claim types
- Restricted models
- Model validation



#### **Model validation**





### **Lift curves**



