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Objectives

Gentle introduction to Linear
Models

lllustrate some simple applications
of linear models

Address some practical modeling
ISsues

Show features common to LMs
and GLMs
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Many Aspects of Linear Models are Intuitive
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An Introduction to Linear Regression




Intro to Regression Cont.

Fits line that minimizes squared deviation between actual and
fitted values

min(> (Y, —Y)’

Workers Comp Sevirity Trend

$10,000
$8,000
$6,000
$4,000 - LJ

Severity

$2,000

$-
1990 1992 1994 1996 1998 2000 2002 2004

Year

@ Sewrity ==Fitted Y




Some Workers Compensation Data

Ultimate Severity
Lags
Closing
Report
Claim Type
Med Only
Fast Track
Lost Time
Injury
Sprain, strain, cut, etc.



Simple IHlustration
Severity vs. Closing Lag
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How Strong Is Linear Relationship?:
Correlation Coefficient

Varies between -1 and 1
Zero = no linear correlation

Severity Report Lag  Closing Lag
Severity 1.000
Report Lag (0.019) 1.000

Closing Lag 0.645 0.000 1.000




Excel Does Regression

Install Data
Analysis Tool
Pak (Add In) that
comes wit Excel

Click Tools, Data
Analysis,
Regression

Regression
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How Good Is the fit?

SUMMARY OUTPUT

Regression Statistics

Multiple R

R Square
Adjusted R Square
Standard Error
Observations

0.6351
0.4034
0.4033
13307
5631




First Step: Compute residual

Residual = actual — fitted

Actual Severity Predicted Severity Residuals
- (2,965) 2,965
272 444 (173)
752 368 383
762 444 318

Sum the square of the residuals (SSE)

Compute total variance of data with no
model (SST)



Goodness of Fit Statistics

R?: (SSE Regression/SS Total)
percentage of variance explained
Adjusted R?

R? adjusted for number of coefficients in
model

Note SSE = Sum squared errors
MS id Mean Square Error



R2 Statistic

Regression Statistics

Multiple R

R Square
Adjusted R Square
Standard Error
Observations

0.6351
0.4034
0.4033
13,307
5,631



Significance of Regression

F statistic:

(Mean square error of Regression/Mean
Square Error of Residual)



ANOVA (Analysis of Variance) Table

Significan
df SS MS F ce F

Regression 1 7,036 7,036 1,404 0
Residual 5,629 28,211 5
Total 5,630 35,247




Goodness of Fit Statistics

T statistics: Uses SE of coefficient to
determine If it Is significant

SE of coefficient is a function of s (mean
square error of regression)

Uses T-distribution for test

It Is customary to drop variable if coefficient
not significant



T-Statistic: Are the Intercept and
Coefficient Significant?

Parameter Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept (4,025.1) 218.1 (18.5) 0.0 (4,452.7) (3,597.5)
Closing Lag 27,667.9 448.5 61.7 - 26,788.6 28,547.1




Other Diagnostics: Residual Plot
Independent Variable vs. Residual

Points should scatter randomly
around zero

If not, a straight line probably is
not be appropriate

Close Lag Residual Plot
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Predicted vs. Residual

Predicted Severity vs Residual
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Random Residual

Random Residuals vs Predicted
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What May Residuals Indicate?

If absolute size of residuals increases as
predicted increases, may indicate non-
constant variance

may Iindicate need to log dependent variable

Use weighted regression
Weight inversely proportional to variance

May indicate a nonlinear relationship



Non-Linear Relationship

Plot of Residuals
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Non-Linear Relationships

Suppose Relationship between dependent and
Independent variable is non-linear?

Linear regression requires a linear relationship

Simulated Severity vs Report Lag
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Transformation of Variables

Apply a transformation to either the

dependent variable, the independent variable
or both

Examples:
Y’ =log(Y)
X = log(X)
X' =1/X

V'=Y1/2



Transformation of Variables

Suppose Severity is a function of the log of
report lag

Compute X’ = log(Report Lag)
Regress Severity on X’

Coefficients Standard Error t Stat

Intercept 1003.58 5.01 200.43
Log Report Lag 12049.13 78.01 154.46




Categorical Independent Variables:
The Other Linear Model: ANOVA

Average of Trended Severity

Injury Total
BRUISE 4,215.78
BURN 2,185.64
CRUSHING 2,608.14
CUT/PUNCT 1,248.90
EYE 534.23
FRACTURE 14,197.49
OTHER 6,849.98
SPRAIN 3,960.45
STRAIN 7,493.70
Grand Total 4,650.76




Model

Model is Model Y = a,, where i is a category of
the independent variable. a; is the mean of
category I.

Aver age Severity By Injury
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Two Categories

Model Y = a;, where i is a category of the
Independent variable

In traditional statistics we compare a, to a,

Data
SPRAIN/STRAIN Average of Trended Severity Count of Trended Severity
OTHER 3,793 3,086
SPRAIN/STRAIN 6,869 1,193
Grand Total 4,651 4,279




If Only Two Categories: T-Test for test of Significance of
Independent Variable

Variable 1 Variable 2

Mean 3,793 6,869
Variance 270,835,811 672,171,797
Observations 3,086 1,193
Pooled Variance 382,688,160

Hypothesized Mean [ -

df 4,277

t Stat (4.61

P(T<=t) one-tail 0.00

t Critical one-tail 1.65

P(T<=t) two-tail 0.00

t Critical two-tall 1.96

/ N\



More Than Two Categories

Use F-Test instead of T-Test

With More than 2 categories, we refer to it as
an Analysis of Variance (ANOVA)



Fitting ANOVA With Two Categories
Using A Regression

Create A Dummy Variable for Sprain/Strain

Variable is 1 of SPRAIN/STRAIN, and O
Otherwise

Severity SPRAIN/STRAIN Dummy Variable
- OTHER 0
271.53 OTHER 0
751.71 SPRAIN/STRAIN 1
762.08 OTHER 0
796.75 OTHER 0



More Than 2 Categories

If there are k Categories:

Create k-1 Dummy Variables

Dummy; = 1 if claim is in category I, and is O
otherwise

The k" Variable is 0 for all the Dummies
Its value Is the intercept of the regression



Design Matrix

Severity Injury Dummy 1 Dummy 2 Dummy 3 Dummy 4 Dummy5 Dummy 6 Dummy 7 Dummy 8
- BRUISE 0 1 0 0 0 0 0 0
271.53 OTHER 0 0 0 0 0 0 0 0
751.71 STRAIN 0 0 1 0 0 0 0 0
762.08 FRACTURE 0 0 0 0 1 0 0 0
796.75 CUT/PUNCT 1 0 0 0 0 0 0 0
382.20 BRUISE 0 1 0 0 0 0 0 0
171.35 EYE 0 0 0 0 0 0 1 0



Regression Output for Categorical

Independent

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.16
R Square 0.03
Adjusted R Square 0.02
Standard Error 19,621.92
Observations 4,112.00
ANOVA
df SS MS F Significance F

Regression 8 4.36E+10 5.45E+09 14 0
Residual 4103 1.58E+12 3.85E+08
Total 4111 1.62E+12

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 6,410.86 954.05 6.72 0.00 4,540.40 8,281.32
Dummy 1 (5,130.72) 1,130.93 (4.54) 0.00 (7,347.96) (2,913.48)
Dummy 2 (2,153.48) 1,147.89 (1.88) 0.06 (4,403.96) 97.00
Dummy 3 1,140.73 1,148.45 0.99 0.32 (1,110.86) 3,392.31
Dummy 4 (2,332.76) 1,683.84 (2.39) 0.17 (5,634.00) 968.48
Dummy 5 8,148.78 1,716.79 4.75 0.00 4,782.94 11,514.61
Dummy 6 (4,205.91) 1,656.39 (2.54) 0.01 (7,453.34) (958.48)
Dummy 7 (5,871.33) 2,299.01 (2.55) 0.01 (10,378.63) (1,364.03)
Dummy 8 (5,532.85) 2,516.55 (2.20) 0.03 (10,466.65) (599.04)




A More Complex Model Multiple
Regression

Let Y =a+ by*X; + b,*X, +
..b*X +e

The X's can be numeric variables
or categorical dummies



Multilple Regression
Y =a+ bl* Report lag + c;Injury;+d,Claim Type ,+e

Regression Statistics

Multiple R 0.39
R Square 0.15
Adjusted R Square 0.15
Standard Error 18,347.71
Observations 4,108.00
ANOVA
df SS MS F Significance F

Regression 10.00 2.44066E+11 2.44E+10 72.50094 4.2148E-137
Residual 4,097.00 1.37921E+12 3.37E+08
Total 4,107.00 1.62327E+12

Coefficients Standard Error t Stat P-value Lower 95%  Upper 95%
Intercept 18,831 1,039 18.12 0.00 16,793 20,869
Dummy 1 (1,132) 1,070 (1.06) 0.29 (3,230) 967
Dummy 2 (103) 1,078 (0.10) 0.92 (2,216) 2,009
Dummy 3 1,419 1,076 1.32 0.19 (689) 3,528
Dummy 4 (1,081) 1,578 (0.68) 0.49 (4,176) 2,013
Dummy 5 3,672 1,618 2.27 0.02 500 6,844
Dummy 6 (1,985) 1,553 (1.28) 0.20 (5,029) 1,059
Dummy 7 (1,023) 2,160 (0.47) 0.64 (5,258) 3,213
Dummy 8 (831) 2,362 (0.35) 0.72 (5,461) 3,799
Claim Type (17,885) 734 (24.38) 0.00 (19,324) (16,447)
Report Lag 134 2,228 0.06 0.95 (4,235) 4,502




More Than One Categorical Variable

For each categorical variable
Create k-1 Dummy variables
K Is the total number of categories

The category left out becomes the “base”
category

It’s value Is contained In the intercept
ModelisY =a; +Db; + ...+ eor

Y =u+a + b+ ...+ e, where a + b,
are offsets to u
e Is random error term



Correlation of Predictor VVariables:
Multicollinearity
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Multicollinearity

Predictor variables are assumed

uncorrelated
Assess with correlation matrix

Ins Index CPI Employment PchangeEmp UEP Rate  Cng UEP
Ins Index 1.000
CPI 0.942 1.000
Employment 0.876 0.984 1.000
PchangeEmp (0.125) 0.016 0.092 1.000
UEP Rate (0.344) (0.622) (0.742) (0.419) 1.000
Cng UEP 0.254 0.143 0.077 (0.926) 0.321 1.000




Remedies for Multicollinearity

Drop one or more of the highly correlated
variables
Use Factor analysis or Principle components

to produce a new variable which is a
weighted average of the correlated variables

Use stepwise regression to select variables
to include



Similarities with GLMs

Linear Models GLMs
Transformation of Link functions
Variables
Use dummy coding for Use dummy coding for
categorical variables categorical variables
Residual Deviance
Test significance of Test significance of
coefficients-T-statistic coefficients-T-statistic
Normal Distribution Exponential family of

distributions



Introductory Modeling Library
Recommendations

Berry, W., Understanding Regression Assumptions,
Sage University Press

lversen, R. and Norpoth, H., Analysis of Variance,
Sage University Press

Fox, J., Regression Diagnostics, Sage University
Press

Fox, J., An R and S-PLUS Companion to Applied
Regression, Sage Publications



