Validating Models

CAS Special Interest Seminar on Predictive Modeling

Christopher Monsour, FCAS, MAAA October 5, 2006

© 2006 Towers Perrin

Why?

- Different types of validation
 - Is it the right model?
 - Is this predictor worth including?
 - How will it perform?
 - What to do about overfit models?
 - What should my tuning parameter be?

Right Model?

Validation (in a broad sense) as part of model search

Supplement to significance testing

Handles difficult comparisons between models

Recall What a GLM Is

- $E(y|x)=f(\beta_0+\Sigma\beta_ix_i)$
- Var(y|x)= ϕ V(E(y|x))= ϕ V(f(β_0 + $\Sigma\beta_i$ x_i))

- The β_i are estimated by maximum likelihood or maximum quasilikelihood, and do not depend on the estimate of ϕ
- Once the β_i are estimated, ϕ is estimated by one of a number of methods

- p-value of the parameter estimate not always very useful in an absolute sense
 - Inaccurate because assumptions violated
 - Var(y|x)= ϕ V(μ) usually not entirely accurate
 - But the hypothesis test depends on this
 - Model not fully specified
 - Rare that a model would be fully specified
 - Similar difficulties with other types of models...not just a GLM problem
 - Not perfect in a relative sense, but even less accurate in an absolute sense, since absolute p-values very sensitive to estimate of \u00f3, the dispersion parameter
 - So what to do?

- Compare many models that are a little different
 - Losses capped at different amounts
 - Different pieces of data taken
 - At random (e.g., ordinary validation and crossvalidation set-ups
 - By design (e.g., by policy year or coverage choice)

Can use a "voting procedure" to determine whether to include a predictor

- Look at which parameter estimates are relatively stable as data perturbed
 - Also a good way to find interactions
 - when the divisions in the data are not random
 - Sometimes easier just to test an interaction directly
 - But if you have a stepwise algorithm set up, may be worth running that separately on different pieces of the data
- For other types of models, similar ideas apply. For hierarchical models, you can perturb the model's hierarchy too
 - For example, trees using the 2nd or 3rd best main split

- Another approach—break the dependent variable into its pieces
 - For example
 - Frequency and severity by peril rather than loss ratio for all perils combined
 - Lost-time and medical-only losses separately
 - Reduces but does not eliminate need to "perturb" data to validate variable selection in each model
 - Reduces the need because model closer to being fully specified and variance assumption closer to being true
 - And because "outliers" have been relegated to specific sub-models (e.g., fire losses or hurricane losses)

- Yet a third approach:
 - Performance on test data with and without the predictor
 - Of course, you don't just pull the predictor out of the model, you also have to re-estimate the other parameters when you do so
 - When the parameter estimate across subsets of data is stable, the parameter estimated on one subset will improve prediction on the other

Other Types of Comparisons

- How many degrees of freedom to give a predictor
 - AIC, Schwarz's Bayesian Criterion, etc., not always the best way to evaluate this
 - Depend on GLM assumptions
 - Depend on the estimate of ϕ since the (quasi)likelihood depends on the estimate of ϕ
 - Can look at performance on test data with the more and less complex treatments
 - E.g., 2 versus 3 parameters for an amount of insurance predictor

How Will it Perform?

- Management wants to know
- Testing on new data obviously ideal
- Cross-validation often employed because can't hold out data
 - Regulatory reasons
 - Practical reasons
 - Thin data to start with
 - 500,000 exposures may not seem thin, but you may be trying to estimate a parameter for 0.2% of the population, and that group may have a 5% claim frequency
- Goal: Make the validation as accurate and objective as possible
- Will assume here that there is an agreed performance measure on out-of-sample data, whether it is lift or MSE or concordance or classification accuracy or a gains chart or something else

Out of Sample Validation (Hold Out)

- If you don't later re-estimate the model from the full data
 - Accurate and objective but model may be sub-par
- If you do re-estimate from the full data
 - Approximate lower bound for model quality, as long as the same process followed in re-estimating from the full data
- Can't help if a data quirk is common to all the data including the hold-out, but not to the operational data going forward
 - For example, if some characteristic (e.g., divorced status) is more accurately recorded in historical data for policies with claims

Response Modeling Example—Gains Chart

Cross-Validation

- Estimate model from full data
- Divide data into K groups at random
- Re-estimate model on each collection of K-1 groups
- Ideally, re-estimation means applying the same process that created the full model
 - What if this involves a lot of human judgment (in selecting the predictors, for example)?
 - Can impair accuracy of the validation if this isn't applied to each cross-validation model
 - But does subjective judgment have a place in "validation"?

- Different pieces of data taken
 - At random (e.g., ordinary validation and cross-validation set-ups
 - By design (e.g., by policy year or coverage choice)

Use each slice as test data once, training data all the other times

Cross-Validation

- To re-phrase the issue: If you don't redo the feature selection, then each cross-validation model still depends on a choice that was based on all the data
 - But could a human being ignore that anyway?

Cross-Validation

- Balance:
 - The amount of optimism depends on how many models are searched
 - Another reason criteria like AIC that relate optimism to d.f. don't always work well
 - Big difference between
 - Filtering 7 variables down to a 4 variable model by hand
 - And sifting through 500 derived variables with stepwise to arrive at a 4 variable model!
 - Humans don't search many by hand
 - Machines search quite a few

Cross-Validation

Intensity scale of model search:

Model Performance

Cross-Validation

- Another item to be aware of:
 - All else being equal, cross-validation tends to be slightly pessimistic about model performance
 - For example, if K=10, it's based on the performance of models that only look at 90% of the data
 - For some measurements (e.g., prediction error) there are corrections available

Performance

So my model is overfit....what now?

- It depends
 - If you have lots of data, or a complicated model, fit a simpler model
 - But what if you have limited data and the model is not particularly complicated?
 - In response modeling, you use an overfit model, but state performance metrics based on performance on out-of-sample data
 - For ratemaking, set rates based on performance on out-of-sample data

Performance

So my model is overfit....what now?

Cross Validation Results

Performance

So my model is overfit....what now?

Decile	Predicted	Actual
1	-24%	-15%
2	-13%	-13%
3	-13%	-4%
4	-12%	-5%
5	-2%	-5%
6	-8%	3%
7	-2%	-2%
8	10%	6%
9	22%	11%
10	39%	16%

If the deciles are scoring tiers, use the predicteds rather than the actuals for the rating factors

Shrunken Fit

So my model is overfit....what now?

Decile	Predicted	Actual
1	-24%	-15%
2	-13%	-13%
3	-13%	-4%
4	-12%	-5%
5	-2%	-5%
6	-8%	3%
7	-2%	-2%
8	10%	6%
9	22%	11%
10	39%	16%

- Note on the left, sample variance of the Predicted column is 19%, while 9% for the actual column.
- Thus, if supports a rating plan, could shrink all the parameters by a factor of roughly 9/19.
- Thus, if the model has a factor of 2.00 for class A, the new model would have a factor of 1.39=exp(9/19*log(2))
- May need to adjust the 9/19 ratio to make the variance match precisely

Shrunken Fit

Brief aside on Cross-Validation for Tuning Parameters

Using Cross-Validation to Tune a Parameter

- Data miners will tell you all about cost-complexity parameters and ridge regression and lasso parameters
 - **E.g.**, ridge regression: $y = \sum x_i \beta_i$ subject to $\sum \beta_i^2 \le \Lambda$
 - Use cross-validation to optimize Λ
- Other examples of parameters that are routinely cross-validated:
 - Mixing proportion for how much weight to give to a pooled variance estimate and how much to give to a separate variance estimate for each class
 - For example, gives rise to compromise between linear and quadratic discriminant analysis

Using Cross-Validation to Tune a Parameter

- Other examples of parameters that are routinely crossvalidated:
 - Window width for local regression

- Roughness penalty for a smoothing spline
 - Typical formulation:
 - Minimize squared error plus $\lambda \int f''$

Using Cross-Validation to Tune a Parameter

- We actuaries make extensive use of a parameter you can also cross-validate
 - K in Bayesian credibility
 - So can apply cross-validation even to a simple one-way class ratemaking problem!
- Nice thing about cross-validation here is it automatically takes into account how accurate the complement of credibility is

Food for Thought

- Other practices around model validation and quantifying model performance? Best practices?
- Should there be a standard of practice? If so, what would it say?
- Motivating references.
 - Breiman, Friedman, Olshen, and Stone, Classification and Regression Trees
 - Davison and Hinckley, Bootstrapping Methods and Their Applications
 - Hastie, Tibshirani, and Friedman, The Elements of Statistical Learning
 - Domingos, "MetaCost: A General Method for Making Classifiers Cost-Sensitive", 5th Int'l KDD Conference, 155-164
 - Domingos, "The Role of Occam's Razor in Knowledge Discovery", Data Mining and Knowledge Discovery, 3, 409-425