

Techniques for Dimension Reduction – Variable Selection with Clustering

CAS Special Interest Seminar on Predictive Modeling

Robert Sanche October 5, 2006

© 2005 Towers Perrin

Contents

- Predictive Variables
 - Economics of Data Storage
 - Sources of Data
 - Redundancy of Variables
- Dimension Reduction
 - Goals of Predictive Modeling
 - Model Generalization
 - Clustering Analysis for Dimensions Reduction
- Variable Clustering
 - Description of Variable Clustering
 - Selection of the Cluster Representative
 - Example of Variable Clustering
- Conclusion and Benefits of Variable Clustering

Economics of Data Storage

"In 1956, IBM sold its first magnetic disk system, RAMAC (Random Access Method of Accounting and Control). It used 50 24-inch metal disks, with 100 tracks per side. It could store 5 megabytes of data and cost \$10,000 per megabyte. (As of 2005, disk storage costs less than \$1 per gigabyte)." http://en.wikipedia.org/wiki/History_of_computing_hardware

- 1 gigabyte = 130 numeric characteristics
 - for 1 million policies
 - for \$1.00

Sources of Data

- New data sources
 - Data warehousing (coverage and claims)
 - External sources
 - Geo-demographics
 - Meteorological
 - Policyholder, household, business owner, company information or agent
 - Other

External Data (Census)

Census (Geo-demographics)

Population

- Average household size
- Median household size
- Population density
- Proportion of household with more than 4
- Etc.

Meteorological (Environmental Canada)

Meteorological (Temperature)

Temperature	Days with Minimum Temperature
Daily Average (°C)	> 0 °C
Standard Deviation	<= 2 °C
Daily Maximum (°C)	<= 0 °C
Daily Minimum (°C)	< -2 °C
	< -10 °C
Degree Days	< -20 °C
Above 24 °C	< - 30 °C
Above 18 °C	
Above 15 °C	Days with Maximum Temperature
Above 10 °C	<= 0 °C
Above 5 °C	> 0 °C
Above 0 °C	> 10 °C
Below 0 °C	> 20 °C
Below 5 °C	> 30 °C
Below 10 °C	> 35 °C
Below 15 °C	
Below 18 °C	

© 2005 Towers Perrin

Meteorological (Precipitation)

Precipitation	Days with Rainfall	
Rainfall (mm)	>= 0.2 mm	
Snowfall (cm)	>= 5 mm	
Precipitation (mm)	>= 10 mm	
Average Snow Depth (cm)	>= 25 mm	
Median Snow Depth (cm)		
Snow Depth at Month-end (cm)	Days With Snowfall	
	>= 0.2 cm	
Days with Precipitation	>= 5 cm	
>= 0.2 mm	>= 10 cm	
>= 5 mm	>= 25 cm	
>= 10 mm		
>= 25 mm	Days with Snow Depth	
	>= 1 cm	
	>= 5 cm	
	>= 10	
	>= 20	

Redundancy of Variables

- External sources of data are highly redundant
- Note that the data is almost exclusively numeric
 - This fact is primordial in order to use variable clustering

Goals of Predictive Modeling

Predictive model

$$Y = \alpha_1 X_1 + \dots + \alpha_n X_n + \beta$$

n is universe of all available predictors

Goal of predictive modeling

- Obtain coefficients for α's and β
- Additional goal
 - Predictive of future results
 - Model generalizes well over time

Model Generalization

- As the number of variables increases and the model complexity increases, the potential of <u>over-fitting</u> the input data increases
- Dimensions reduction
 - Clustering (K-Means)
 - Rows
 - variable clustering
 - Columns
 - Alternatives (Factor, PCA, One-way)

Clustering Analysis for Dimensions Reduction

- "Cluster Analysis is a set of methods for constructing a sensible and informative classification of an initially unclassified set of data, using the variable values observed on each individual" B.S. Everitt, *The Cambridge Dictionary of Statistics*, 1998
- Divide set of data (variables) into groups of similar characteristics
- Unsupervised learning technique
- Useful only when there is <u>redundancy</u> in the data

Description of Variable Clustering

- Variable clustering divides a set of <u>numeric</u> variables into clusters.
- A large set of variables can be replaced by a single member (cluster representative).
- Reduce the number of variables
 - More difficult to identify irrelevant variables than redundant variables

•
$$Y = \alpha_1 X_1 + ... + \alpha_m X_m + \beta$$

• where m

Selection of the Cluster Representative

$$1 - R^{2}_{ratio} = (1 - R^{2}_{own}) / (1 - R^{2}_{nearest})$$

- Intuitively, we want the cluster representative to be as closely correlated to its own cluster ($R^2_{own} \rightarrow 1$) and as uncorrelated to the nearest cluster ($R^2_{nearest} \rightarrow 0$).
- Therefore, the optimal representative of a cluster is a variable where 1-R² ratio tends to zero

Example of Variable Clustering

3 CLUSTERS		R-SQUARED WITH		
Cluster	Variable	Own Cluster	Next Closest	1-R ² Ratio
Cluster 1	Rain Days	0.5995	0.0426	0.4183
	Snow Days	0.8976	0.0317	0.1095
	Annual Snow	0.8940	0.0314	0.1095
Cluster 2	Population Density	0.9804	0.0228	0.0201
	Car Density	0.9804	0.0113	0.0199
Cluster 3	Population Growth	0.6459	0.0911	0.3896
	Legal Expenditures	0.6459	0.0013	0.3546

Clusters of Variables

Name of Variable or Cluster

Conclusion and Benefits of Variable Clustering

- Variable clustering reduces the amount of variables available for predictive modeling (GLM, etc.)
- The predictive modeling process using variable clustering
 - Produces a model that generalize well over time
 - Increases interpretability of the results
 - Reduces time spend on variables selection