

TILLINGHAST

Predictive Modeling for Smaller Companies – Commercial

CAS Special Interest Seminar on Predictive Modeling

Richard A. Smith, FCAS, MAAA Katharine Barnes, FCAS, MAAA October 4, 2006

© 2005 Towers Perrin

Predictive Modeling in Commercial Lines

- Overall rates for smaller companies writing commercial lines
 - Tend to be set with Bureau experience
 - Modified by company experience
 - Further modified by competitive landscape
- Market is becoming more complex
 - Many larger carriers are applying approaches they've learned from personal lines
- Predictive modeling can be used to refine rate levels
 - Tiers/underwriting (who is really "preferred")
 - Schedule rating (more data-driven than underwriters' judgment)
 - Others

What is a Smaller Company to Do?

- If we do nothing, adverse selection will happen.
- But we don't have enough data to do this type of analysis...

A Smaller Company CANNOT Just...

- Add on "credit score" based on a competitor's filing, on top of the existing rating plan
 - This over-discounts some classes, and under-discounts others
 - May have implications for new business growth
- Create a full-blown class plan on their own data

A Smaller Company CAN Do Something

- For predictive modeling projects, a range of information can be used to analyze the relative rate levels for different types of insureds
- The more data you have, the more complex an analysis can be performed, but you do not need to be a "Top 10" carrier to have enough data to do some level of analysis.
 - Large volume of very detailed company-specific data
 - Rate plans, rate relativities, tiers, territories
 - Smaller volume of data (fewer records) and/or fewer variables captured per record suggests scaled back analyses
 - Tiers and tier relativities
 - Refine major risk factors (subdivide categories)
 - Underwriting and/or schedule debit/credit guidance

A Smaller Company May Have Some Advantages

- You know your local market
- You know your agents
 - May be a good source of competitive information
- You may be able to implement changes without drawing too much attention from your competitors
- You may be able to "Me Too" parts of some competitors' filings
- You may have a stable history
 - Fewer mergers and acquisitions fewer legacy systems issues
 - More institutional knowledge
 - Better communication within the company (underwriting, claims, marketing can all talk to actuarial)
- More streamlined management decision-making

How Much Data is Enough?

- Actuaries will always welcome more data but...
 - Think claims, not exposures
 - At a minimum 5,000 claims are needed
 - This is a VERY ROUGH rule of thumb
 - Much depends on what you're trying to analyze
 - For a relatively high frequency line of business, fewer exposures are needed
 - Can combine information for example for commercial automobile, can combine coverages for relativities if the volume is too low for each coverage individually (e.g., BI/PD)
 - Can add more years worth of data
 - A model of frequency (rather than severity or pure premium) can fit the data more easily

How Much Data is Enough?

- Hypothetical Examples
 - Commercial Auto 5,000 claims at frequency of 5% = 100,000 exposures, or 25,000 exposures per year over four years
 - Significantly lower frequency for BI would need adjustment to analysis
 - BOP 5,000 claims at frequency of 10% = 50,000 exposures, or 12,500 exposures per year over four years
 - Issues related to liability versus property coverages
 - Workers Compensation
 - Similar concepts

Types of Data

- If you do not have data
 - You can buy it
 - You can find it (including in your own underwriting department)
 - You can start collecting it now, and use it later
 - You can review relativities from competitors to estimate the effect of the data

Types of Data for Commercial Automobile

- Personal Auto
 - Driver characteristics
 - Vehicle characteristics
 - Household characteristics
 - Other insurance characteristics
 - Agent characteristics
 - Etc.
 - (Hundreds of possibilities)

- Commercial Auto
 - In many cases a similar or parallel type of data element is useful, especially for smaller commercial auto policies (single vehicles or small fleets)
 - For sole proprietors, very similar data
 - For small insureds, driver characteristics may be available, vehicle data will be available, and other characteristics may be purchased

Types of Data for Commercial Automobile

- Vehicle Information
 - Number, type, age, weight, value, location, etc.
- Driver Information
 - Number, age, sex, marital status, credit, driving record, etc.
- Business
 - Years in business, size of business, class of business, etc.
- Owners
- Environmental/economic
- Claims history
 - For commercial auto and other coverages
- Policy
 - Duration, deductibles, endorsements, other coverages

© 2005 Towers Perrin

Types of Data for Business Owners Policies

- Building Information
 - Construction class, age, amount of insurance, location, etc.
- Employee Information
 - Number, demographics, classes, etc.
- Business
 - Years in business, size of business, class of business, etc.
- Owners
- Environmental/economic
- Claims history
 - For BOP and other coverages
- Policy
 - Duration, deductibles, endorsements, other coverages
- Agent

Types of Data for Workers Compensation

- Company Information
 - Years in business, size of business, class of business, etc.
- Employee Information
 - Number, demographics, classes, etc.
- Safety Programs
 - Implementation, effectiveness, OSHA violations, etc.
- Owners
- Environmental/economic
- Claims history
 - For WC and other coverages
- Policy
 - Duration, deductibles, endorsements, other coverages
- Agent

Types of Data for Medical Malpractice

- Medical Practice Information
 - Specialty, years in business, size of business, stability of members, etc.
- Employee Information
 - Number, demographics, classes, etc.
- Owners
- Environmental/economic
- Claims history
 - For medical malpractice and other coverages
- Policy
 - Duration, deductibles, endorsements, other coverages
- Agent

External Data

- You can buy data, or get it from publicly available sources
 - Insured-Specific
 - Credit score
 - Corporate financial information
 - Insured reported infractions
 - Location-Specific
 - Census/demographics
 - Weather
 - Crime statistics
- Data may not be available for all business, or may not be available in all states
 - Quality of data can vary

Data Preparation is 80% of the Battle

- Messy data causes some problems
 - Model may not converge (you'll have to fix the data anyway!)
 - Poor coding will suppress differences between classes
- Hypothetical example 20% of drivers not coded as youthful (based on statistical system issue, not actual rating)
- Particularly likely in commercial auto

Incorrect Driver Information

Now You're Ready to Start Analyzing

- Get ready to deal with some pragmatic issues
- Be aware of some modeling issues
 - Potential strategies
 - Sometimes involves trade-offs

Pragmatic Issues

- Understand your goals
 - Underwriting model or tiers probably more forgiving
 - Want to control for rating characteristics, not set those relativities
 - Initially, want direction and magnitude, not precision
 - Subdividing a broad category similar issues
 - These decisions also drive your data needs
- Variable selection (initial candidates and later, what to leave in model)
 - Brute force searches using predictive modeling is not a substitute for subject matter expertise
 - Speak with underwriters and claim adjusters
 - They'll possibly have a sense for important variables
 - They may have an idea of magnitude
 - Understand competitors' approaches (don't reinvent the wheel)

Modeling Issues

- Big danger is over-fitting
 - Find signal not noise
 - Judgment will often be needed in face of volatility
 - When possible split the data (out of sample validation)
- General understanding of modeling will help maximize value of your data
 - Data volume
 - Model design

Dealing with Volatility

- Use more years of data
- Look at a given factor's interaction with year
 - A variable that is stable from year to year is more credible, even with low volume of claims
- Cross-validation or re-sampling approaches
 - Create model with most of data, and then test it on the remaining data
- May want to "fix" some factors at predetermined levels
 - Major rating factors
 - Desirable discounts
 - Then let model compensate for remaining variables

Volatility versus Consistency by Year

Desirable

Not So Desirable

Volatility versus Consistency in Samples

Desirable

Not So Desirable

Model Design

- Although it might seem counter-intuitive, consider separate frequency and severity models
 - Frequency often predominate contributor to cost differences
 - Standard errors usually tighter more variables survive vetting
 - Isolates claim size volatility (often end up with simpler severity models)
 - Then combine into pure premium model

Indicated Frequency Relativities - 10,000 Claims

Indicated Frequency Relativities – 5,000 Claims

Indicated Severity Relativities - 10,000 Claims

Indicated Severity Relativities - 5,000 Claims

Model Design (Continued)

- Watch degrees of freedom
 - Too many variables in a model, or too many levels of the variables
 - Might need to treat some variables as continuous
 - May want to look at piece-wise/spline approaches

Model Design (Continued)

Similarly, you may wish to split losses into multiple parts

- By peril/cause of loss
- By size of loss
- Should give more homogeneous buckets to work with
- Even so, you still may end up with simple models

Comprehensive Coverage - Hypothetical Data

Model Design (Continued)

- Alternate approach might be able to analyze loss ratios
 - More noise to deal with
 - Need premiums at current rate level
 - Can be difficult to determine
 - Main benefit is in combining coverages
 - Probably good for tier or underwriting model
 - Guidance for schedule debits and credits

Once You Have Data, and Analyze It, What are the Other Major Issues?

- Implementation Once you get your data in place and do your predictive modeling, and you change your rating structure, different insureds will be affected differently
 - Rate Level Effect What off-balances do you need to get a revenueneutral plan (or measure the effect on revenues of the new plan?
 - Dislocation How do your new indicated rates compare to your current rates?
 - Competition How do your new indicated rates compare to your competitors' rates?
 - Communication How do you communicate the new plan to your sales force (either internal/captive or independent agents)?
 - Regulation How do you get your new rating plan approved?
 - Support How does your systems department support the new plan?