Practical issues in model design
CAS Special Interest Seminar on Predictive Modeling
Boston, October 2006
James Tanser

Agenda

- Variates, Polynomials and Splines
- Continuous interactions
- Practical problems with continuous variables
- Over-dispersed Poisson

Agenda

- Variates, Polynomials and Splines
- Continuous interactions
- Practical problems with continuous variables
- Over-dispersed Poisson

Variates, Polynomials and Splines

- Common to model using treating all variables categorically, with discrete levels
- Allows actual shape to show through
- Produces step changes in genuinely continuous variables (eg AOI)
- No extrapolation
- Some variables (age) are both continuous and discrete
- Step changes are acceptable
- Some smoothness is desirable

Variates, Polynomials and Splines

- Variates allow each unique data value to have a different effect on the linear predictor, but force some smoothness
- In practice implemented via:
- Polynomials
or
- Splines

Agenda

- Variates, Polynomials and Splines
- Continuous interactions
- Practical problems with continuous variables
- Over-dispersed Poisson

Continuous interactions

- Interaction = multiplication
- Continuous * Discrete
- Continuous * Continuous

Interaction = Multiplication

- The notation is the clue:
- A.B or A*B
- For example:
- Two variates X and Y
- Model should be linear in X and linear in Y
- Interaction between X and Y to be included

Interaction = multiplication

- Model 1: $Z=a X+b Y$
- Linear in X
- Linear in Y
- No interaction - "a" does not depend on Y

Interaction = multiplication

- Model 1: Z = $a X+b Y$
- Linear in X
- Linear in Y
- No interaction - "a" does not depend on Y
- Model 2: Z = aX + bY + cXY
- Linear in X (for any given Y)
- Linear in Y (for any given X)
- Interaction present - the gradient for X depends on the value of Y (and vice versa)
- Quadratic in $X=Y$ direction

Continuous interactions

- Interaction = multiplication
- Continuous * Discrete
- Continuous * Continuous

Continuous * Discrete

- Define a new set of variates, one for each factor level, so that variate n is:
- Variate value if factor at level n
- Zero otherwise
- Treat each of these variates as usual:
- Polynomial (same order?)
- Spline (same knots?)
- Useful to include factor in model for neatness

Design matrix Spline

18	M	1	1	1	0	0	\ldots	1
20	F	1	0.52	0.98	0.02	0	\ldots	0
22	F		1	0.17	0.83	0.17	0	\ldots
24	M	1	0.02	0.5	0.48	0.02	\ldots	1
26	M		1	0	0.17	0.67	0.17	\ldots
28	M	1	0	0.02	0.48	0.48	\ldots	1
30	F	1	0	0	0.17	0.67	\ldots	0
32	F	1	0	0	0.02	0.48	\ldots	0
34	M	1	0	0	0	0.17	\ldots	1
36	F	1	0	0	0	0.02	\ldots	0

Continuous interactions

- Interaction = multiplication
- Continuous * Discrete
- Continuous * Continuous

Continuous * Continuous

- Simply create $\mathrm{X}^{\star} \mathrm{Y}$ terms!
- Eg Polynomial order 2 for X and Y :
- X, X^{2}, Y, Y^{2}
- XY
$-X Y^{2}, X^{2} Y$
$-X^{2} Y^{2}$
- For splines combine together all the basis functions
$-f_{1}(x), f_{2}(x), f_{3}(x), \ldots, g_{1}(y), g_{2}(y), g_{3}(y), \ldots$
$-f_{1}(x) \cdot g_{1}(y), f_{2}(x) \cdot g_{1}(y), f_{3}(x) \cdot g_{1}(y)$
- ...

Agenda

- Variates, Polynomials and Splines
- Continuous interactions
- Practical problems with continuous variables
- Over-dispersed Poisson

Practical problems

- Number of variates
- Missing values
- Edge effects

Number of variates

- Various tricks used to make modeling with categorical factors quick
- Only one calculation per factor per row
- Calculation is addition
- Tricks don't work variates and calculation is multiplication
- Polynomial with 5 terms is slower than adding 5 new factors

Number of variates

- Splines make it easy to include many variates, slowing down the model
- Use only at final modelling stages
- Be parsimonious!
- Interactions with variates creates many (tens or hundreds) of variates very quickly

Practical problems

- Number of variates
- Missing values
- Edge effects

Missing values

- Missing values in a variate often cause entire record to be ignored
- Replace missing values with zeros
- Care is needed to differentiate "real" zeros and "missing" zeros
- Create a missing flag and include in all models involving variate
- Remember spline basis functions transform zero to some other (non-zero) value (extrapolation)

Practical problems

- Number of variates
- Missing values
- Edge effects

Edge effects

- One or two records with extreme variate values can have a disproportionate effect on the model
- Look at leverage or Cook's distance
- Understand your data
- Consider limiting range of variate
- Be careful when extrapolating

Cautionary example

- Artificial data, loosely based on actual naive analysis
- Retention analysis containing three records with incorrect premium change, all of which renewed
- Problems:
- Overfitting to edges
- Knot placement

Agenda

- Variates, Polynomials and Splines
- Continuous interactions
- Practical problems with continuous variables
- Over-dispersed Poisson

Interdependence of claim events

- Sometimes claim events are not individually independent
- A real life example:
- Health insurer recorded data such that individual PMI claim payments could not be matched to a particular single medical event
- this meant that each transactional claim payment was recorded as a new claim regardless of the event
- claim numbers therefore appear in multiples per policy in the data
- This invalidates assumptions underlying the GLM framework

Mathematical implications

- Poisson model used for numbers assumes

$$
E[Y]=\underline{\mu} \quad \operatorname{Var}[\underline{Y}]=\underline{\mu}
$$

- Replacing every one claim with K claims gives

$$
E[\underline{Y}]=K . \underline{\mu} \quad \operatorname{Var}[\underline{Y}]=K^{2} . \underline{\mu}
$$

- But the Poisson GLM modelling process applies the Poisson assumptions which are, in this case wrong!

$$
E[Y]=K . \mu \quad \operatorname{Var}[Y]=K . \underline{\mu}
$$

Mathematical implications

- Fitting a Poisson GLM to claims data that is not independent does not effect the parameter estimates
- But it does effect the standard errors!

Generalised linear models

$$
\begin{gathered}
\mathrm{E}[\underline{Y}]=\underline{\mu}=g^{-1}(\mathbf{X} \cdot \underline{\beta}+\xi) \\
\operatorname{Var}[\underline{Y}]=\phi \cdot \operatorname{V}(\underline{\mu}) / \underline{\omega} \\
\text { scale parameter }
\end{gathered}
$$

- Inclusion of a scale parameter adjusts the variance assumed in the model

Estimating the scale parameter

Deviance scale for Poisson

$$
\phi=D /(n-p)
$$

- Pearson scale

$$
\begin{gathered}
\chi^{2}=\Sigma \omega_{\mathrm{i}}\left(\mathrm{Y}_{\mathrm{i}}-\mu_{\mathrm{i}}\right)^{2} / \mathrm{V}\left(\mu_{\mathrm{i}}\right) \\
\phi=\chi^{2} /(\mathrm{n}-\mathrm{p})
\end{gathered}
$$

Theoretical case study

- Fitted numbers model to the TPPD claims numbers
- Data was adjusted by
- multiplying exposure by 1000
- multiplying claims numbers by 10
- Tried fitting models
- Poisson
- overdispersed Poisson (with Deviance scale)
- overdispersed Poisson (with Pearson scale)

The correct answer

Fully worked example of the tutorial job
Run 8 Model 1 - Final models with analysis - TPPD numbers

The correct answer

Fully worked example of the tutorial job
Run 8 Model 1 - Final models with analysis - TPPD numbers

P value $=0.0 \%$
Rank 10/11
4

Practical issues in model design
CAS Special Interest Seminar on Predictive Modeling
Boston, October 2006
James Tanser

