

watsonwyatt.com

Practical Issues in Model Design

CAS Special Interest Seminar on Predictive Modeling

Claudine Modlin, FCAS, MAAA October 11, 2007

Agenda

- Variates, Polynomials and Splines
- Continuous interactions
- Practical problems with continuous variables
- Over-dispersed Poisson

Agenda

Variates, Polynomials and Splines

- Continuous interactions
- Practical problems with continuous variables
- Over-dispersed Poisson

Variates, Polynomials and Splines

- Common to model treating all variables categorically, with discrete levels
 - allows actual shape to show through
 - produces step changes in genuinely continuous variables (eg AOI)
 - no extrapolation
- Some variables (age) are both continuous and discrete
 - step changes are acceptable
 - some smoothness is desirable

Variates, Polynomials and Splines

- Variates allow each unique data value to have a different effect on the linear predictor, but force some smoothness
- In practice implemented via:
 - polynomials
 - or
 - splines

Spline definition

A series of polynomial functions, with each function defined over a short interval

Intervals are defined by k+2 knots

- two exterior knots at extremes of data
- variable number (k) of interior knots
- At each interior knot the two functions must join "smoothly"

Agenda

- Variates, Polynomials and Splines
- Continuous interactions
- Practical problems with continuous variables
- Over-dispersed Poisson

Continuous interactions

- Interaction = multiplication
- Continuous * Discrete
- Continuous * Continuous

Interaction = Multiplication

- The notation is the clue:
 - X.Y or X*Y
- For example:
 - two variates X and Y
 - model should be linear in X and linear in Y
 - interaction between X and Y to be included

No Interaction

- Model 1: Z = aX + bY
 - linear in X
 - linear in Y
 - no interaction "a" does not depend on Y

No Interaction Z = aX + bY

Interaction = Multiplication

- Model 1: Z = aX + bY
 - linear in X
 - linear in Y
 - no interaction "a" does not depend on Y
- Model 2: Z = aX + bY + cXY
 - linear in X (for any given Y)
 - linear in Y (for any given X)
 - interaction present the gradient for X depends on the value of Y (and vice versa)
 - quadratic in X=Y direction

Interaction = Multiplication Z = aX + bY + cXY

Interaction = Multiplication Z = aX + bY + cXY

Continuous interactions

- Interaction = multiplication
- Continuous * Discrete
- Continuous * Continuous

Continuous * Discrete

- Define a new set of variates, one for each factor level, so that variate n is:
 - variate value if factor at level n
 - zero otherwise
- Treat each of these variates as usual:
 - polynomial (same order?)
 - spline (same knots?)
- Useful to include factor in model for neatness

Design matrix Spline and Discrete (no interaction)

Design matrix Discrete * Spline

1	1	1	0	0	 0	0	0	0	
1	0	0	0	0	 0.52	0.98	0.02	0	
1	0	0	0	0	 0.17	0.83	0.17	0	
1	0.02	0.5	0.48	0.02	 0	0	0	0	
1	0	0.17	0.67	0.17	 0	0	0	0	
1	0	0.02	0.48	0.48	 0	0	0	0	
1	0	0	0	0	 0	0	0.17	0.67	
1	0	0	0	0	 0	0	0.02	0.48	
1	0	0	0	0.17	 0	0	0	0	
1	0	0	0	0	 0	0	0	0.02	

Design matrix Discrete * Polynomial

1	18	324	5832	104976	 0	0	0	0	
1	0	0	0	0	 20	400	8000	160000	
1	0	0	0	0	 22	484	10648	234256	
1	24	576	13824	331776	 0	0	0	0	
1	26	676	17576	456976	 0	0	0	0	
1	28	784	21952	614656	 0	0	0	0	
1	0	0	0	0	 30	900	27000	810000	
1	0	0	0	0	 32	1024	32768	1048576	
1	34	1156	39304	1336336	 0	0	0	0	
1	0	0	0	0	 36	1296	46656	1679616	

Continuous interactions

- Interaction = multiplication
- Continuous * Discrete
- Continuous * Continuous

Continuous * Continuous

- Simply create X*Y terms
- Eg Polynomial order 2 for X and Y:
 - X, X^2, Y, Y^2
 - XY
 - $XY^{2}, X^{2}Y$
 - $\ X^2 Y^2$

- ...

- For splines combine together all the basis functions
 - $f_1(x), f_2(x), f_3(x), \dots, g_1(y), g_2(y), g_3(y), \dots$
 - $\ f_1(x).g_1(y), f_2(x).g_1(y), f_3(x).g_1(y)$

Watson Wyatt Worldwide

Not enough room on slide to show!

Agenda

- Variates, Polynomials and Splines
- Continuous interactions
- Practical problems with continuous variables
- Over-dispersed Poisson

Practical problems

- Number of variates
- Missing values
- Edge effects

Number of variates

- Various tricks used to make modeling with categorical factors quick
 - only one calculation per factor per row
 - calculation is addition
- Tricks don't work for variates and calculation is multiplication
 - polynomial with 5 terms is slower than adding 5 new factors

Number of variates

- Splines make it easy to include many variates, slowing down the model
 - use only at final modeling stages
 - be parsimonious
- Interactions with variates creates many (tens or hundreds) of variates very quickly

Practical problems

- Number of variates
- Missing values
- Edge effects

Missing values

- Missing values in a variate often cause entire record to be ignored
 - replace missing values with zeros
- Care is needed to differentiate "real" zeros and "missing" zeros
 - create a missing flag and include in all models involving variate
 - remember spline basis functions transform zero to some other (non-zero) value (extrapolation)

Practical problems

- Number of variates
- Missing values
- Edge effects

Edge effects

- One or two records with extreme variate values can have a disproportionate effect on the model
 - look at leverage or Cook's distance
 - understand your data
 - consider limiting range of variate
 - be careful when extrapolating

Cautionary example

- Artificial data, loosely based on actual naive analysis
- Retention analysis containing three records with incorrect premium change, all of which renewed
- Problems:
 - overfitting to edges
 - knot placement

Simple grouped oneway

Retention job

Example of problem factor

Trials ---- Probability

Simple grouped oneway

Retention job

Trials ---- Probability

Detailed oneway

Retention analysis

Example of problem factor

Trials ---- Probability

Detailed oneway

Retention analysis

Example of problem factor

Trials ---- Probability

X-Y plot

Probability

Copyright © Watson Wyatt Worldwide. All rights reserved

X-Y plot

Probability

Model results

---- Probability ----- Fitted

Model results

Probability — Model

Agenda

- Variates, Polynomials and Splines
- Continuous interactions
- Practical problems with continuous variables
- Over-dispersed Poisson

Interdependence of claim events

- Sometimes claim events are not individually independent
- A real life example:
 - health insurer recorded data such that individual medical claim payments could not be matched to a particular single medical event
 - this meant that each transactional claim payment was recorded as a new claim regardless of the event
 - claim counts therefore appear in multiples per policy in the data
- This invalidates assumptions underlying the GLM framework

Mathematical implications

Poisson model used for claim counts assumes

$$\mathsf{E}[\underline{\mathsf{Y}}] = \underline{\mu} \qquad \quad \mathsf{Var}[\underline{\mathsf{Y}}] = \underline{\mu}$$

Replacing every one claim with K claims gives

$$\mathsf{E}[\underline{Y}] = \mathsf{K}.\underline{\mu} \qquad \mathsf{Var}[\underline{Y}] = \mathsf{K}^2.\underline{\mu} \checkmark$$

But the Poisson GLM modeling process applies the Poisson assumptions which are, in this case wrong!

$$E[\underline{Y}] = K.\underline{\mu} \quad Var[\underline{Y}] = K.\underline{\mu} \quad X$$

Mathematical implications

- Fitting a Poisson GLM to claims data that is not independent does not affect the parameter estimates
- But it does affect the standard errors!

Generalized linear models

$$E[\underline{Y}] = \underline{\mu} = g^{-1}(\mathbf{X} \cdot \underline{\beta} + \underline{\xi})$$
$$Var[\underline{Y}] = \phi \cdot V(\underline{\mu}) / \underline{\omega}$$
scale parameter

Inclusion of a scale parameter adjusts the variance assumed in the model

Estimating the scale parameter

Deviance scale for Poisson

$$\phi = D / (n - p)$$

Pearson scale

$$\chi^{2} = \Sigma \omega_{i} (Y_{i} - \mu_{i})^{2} / V(\mu_{i})$$
$$\phi = \chi^{2} / (n - p)$$

Theoretical case study

- Fitted model to the third party property damage claim counts
- Data was adjusted by
 - multiplying exposure by 1,000
 - multiplying claims counts by 10
- Tried fitting models
 - Poisson
 - Over-dispersed Poisson (with Deviance scale)
 - Over-dispersed Poisson (with Pearson scale)

The correct answer

Fully worked example of the tutorial job

Run 8 Model 1 - Final models with analysis - TPPD numbers

Exposure * 1,000

Fully worked example of the tutorial job

Run 8 Model 2 - Final models with analysis - TPPD2 numbers

Counts * 10

Fully worked example of the tutorial job

Run 8 Model 3 - Final models with analysis - TPPD3 numbers (log poisson)

Over-dispersed Poisson (deviance)

Fully worked example of the tutorial job

Run 8 Model 4 - Final models with analysis - TPPD3 numbers (log over-dispersed deviance poisson)

Over-dispersed Poisson (Pearson)

Fully worked example of the tutorial job

Run 8 Model 5 - Final models with analysis - TPPD3 numbers (log over-dispersed pearson poisson)

The correct answer

Fully worked example of the tutorial job

Run 8 Model 1 - Final models with analysis - TPPD numbers

watsonwyatt.com

Practical Issues in Model Design

CAS Special Interest Seminar on Predictive Modeling

Claudine Modlin, FCAS, MAAA October 11, 2007

