Predictive Modeling for Workers Compensation

David Otto, FCAS, MAAA EMB America LLC

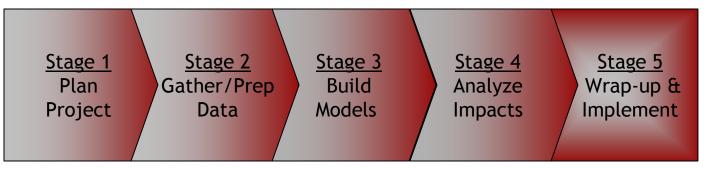
OUTH MERICA ATLANTIC OCEAN

B

Modeling Workers Compensation Risks

PURPOSE: To provide a technical discussion of solutions to the challenges associated with modeling workers compensation insurance.

OUTLINE

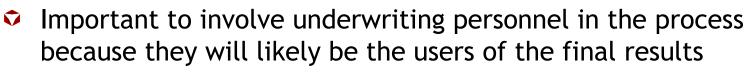

- Plan Project
- Gather Data
- Build Models
- Analyze
- Implement

Predictive Modeling Process

• Plan

- Gather Data
- Build Models
- Analyze
- Implement

- 1. <u>Plan Project</u>: establish scope, objectives, and requirements
- 2. <u>Gather & Prepare Data:</u> gather data and create necessary model files
- 3. <u>Build Models</u>: use historical data to build frequency and severity models including underlying development models for medical and indemnity (and possibly expense) losses and combine to form modeled pure premiums
- 4. <u>Analyze Impacts:</u> analyze the renewal, competitive, and profitability impacts of various proposals and finalize decisions
- 5. <u>Wrap-Up:</u> document decisions and communicate results



Plan Project

- Plan
- Gather Data
- Build Models
- Analyze
- Implement

<u>GOAL</u>: Establish scope, objective, and requirements

- Critical for proper project management
- Understand objectives and goals of all stakeholders
 - Timing
 - End product (most often an underwriting score but how is it expected to be used?)
 - Tiering
 - Schedule Rating automated or recommended?
- Ensure all stakeholders understand benefits of predictive modeling over traditional techniques

Gather & Prepare Data

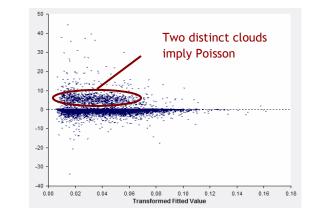
- Plan
- Gather Data
- Build Models
- Analyze
- Implement
- Data preparation can consume over half of the time spent on a predictive modeling project
- Key data challenges with a workers compensation project
 - Volume

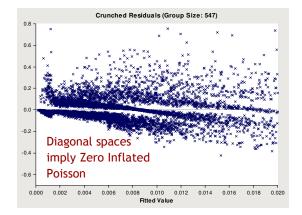
_

- Underlying distribution
- Dimensional dilution
- Exposure base
- Quality
 - Policy/loss matching
 - Null records
- Dimensionality
 - Policy vs. claim rating variables
 - External data
 - Underwriting data

Data Challenge: Volume

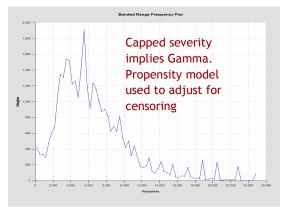
• Plan

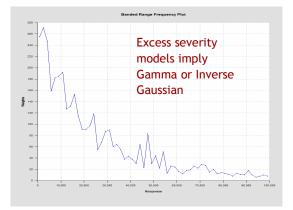

• Gather Data


 $\mathbf{\nabla}$

- Build Models
- Analyze
- Implement

Underlying Distribution


- Low frequency: fewer observations



- High severity: greater volatility

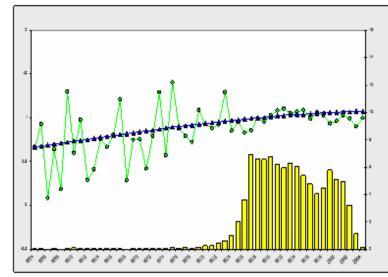
Data Challenge: Volume

• Plan

• Gather Data

Build Models

- Analyze
- Implement


Dimensional Dilution

- Observations are spread thinly over multiple states
- Extrapolating beyond niche markets

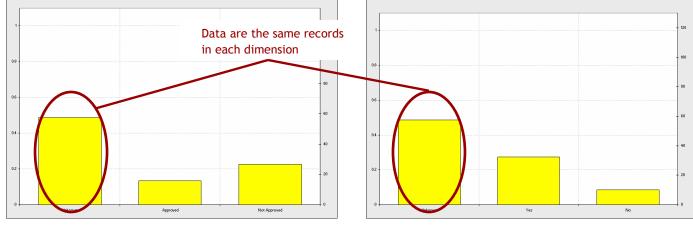
Class Codes: Ranked by NCCI Rate

- Use indications from class codes with higher volumes
- Use NCCI rate for class codes with low volumes

Policy Year

• More years of data with a time element adds credibility without sacrificing trend

Data Challenge: Quality


- Plan
- Gather Data
- Build Models
- Analyze
- Implement
- Using new tools always seems to uncover previously undetected data problems that must be researched
- Typical issues
 - Bad data (e.g., 10 year old workers), especially for variables not used in rating
 - Poor linkage between losses and policy and class characteristics
 - No mapping of old groupings into new groupings (e.g., boundary changes)
 - Inconsistency between variables
 - Inconsistency within variables
 - Free flow versus set level data capture
- Issues above are magnified with long-tailed lines because of the need for a longer history of data

Data Challenge: Quality

- Plan
- Gather Data
- Build Models
- Analyze
- Implement

Null records prevalent in workers compensation data sets
 Creates complex aliases

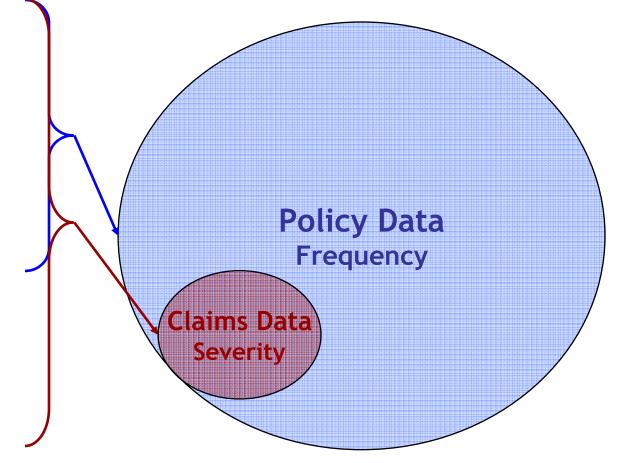
Approved Program: (Approve/Not Approved)

Loss Control Program: (Yes/No)

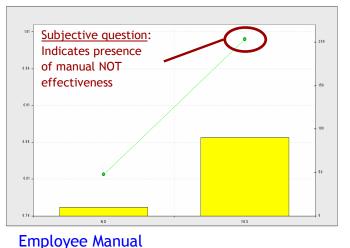
Solution

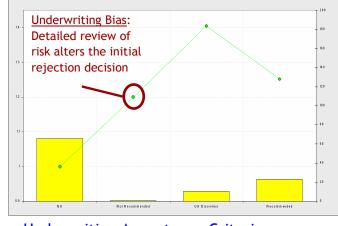
- Create appropriate model structure to isolate the effect of the missing data
 - Assign a parameter for unknown in one rating factor and group unknown with the base in all other rating factors

Data Challenge: Dimensionality


• Plan

- Gather Data
- Build Models
- Analyze
- Implement


Workers compensation systems capture small amounts of policy information and a large amounts of claim information

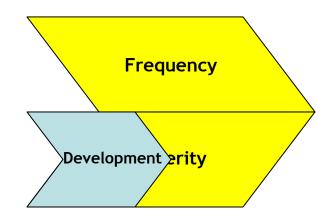

Data: Class code Territory Experience mod Minimum premium **Employee count** Credit score Agency Years renewed **Company size** Premium discount Schedule credit Injury type Injury description Injury location Age Gender Attornev Report lag Weekly wage Marital status ...many more

Data Challenge: Dimensionality

- Plan
- Gather Data
- Build Models
- Analyze
- Implement
- Policy data is often supplemented with external data and underwriting information
 - Incorporating external data
 - Cost
 - Time
 - Maintenance
 - Value
 - Incorporating underwriting / policy application data

Underwriting Acceptance Criteria

Data Challenge: Dimensionality


Credit Score

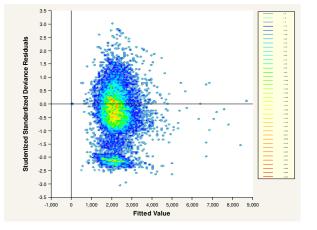
- Credit is a common external data source in personal lines
- Applicability to commercial lines?
- Problems:
 - Permanency:
 - Personal lines: credit sticks with you for life
 - Commercial lines: bad credit companies tend to go out of business and are often reborn under a new name
 - Linkage
 - Personal lines: personal info (i.e. ss number) provides match
 - Commercial lines: difficult to match
 - » Multiple mailing addresses
 - » Multiple company names within corporate structure
- Solutions:
 - Policy tenure may be a good proxy for credit
 - Try linking data with multiple variables to increase success rate
 - Phone number
 - Business name
 - FEIN

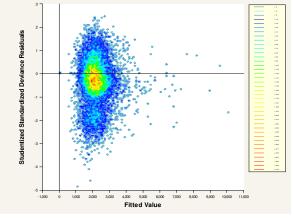
Build Models

- Plan
- Gather Data
- Build Models
- Analyze
- Implement
- Predictive modeling techniques are transportable to all types of insurance but commercial lines modeling has its own unique challenges that need to be properly addressed
- Key modeling challenges with a workers compensation project
 - Components
 - Development

- Plan
- Gather Data
- Build Models
- Analyze
- Implement
- A common misperception in commercial lines is to perform loss ratio modeling
- Modeling loss ratios is significantly inferior to pure premiums for both practical and theoretical reasons
 - Habit from traditional pricing methodology or necessity
 - Limitations of the predictive modeling software
 - Short cut

- Plan
- Gather Data
- Build Models
- Analyze
- Implement

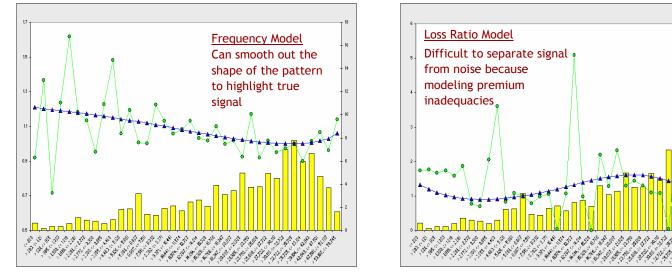

On-level Premium


- Historical data must be re-rated using current rates (i.e. extension of exposures)
 - Each risk must be re-rated (average current rate level factors will not work)
 - Workers compensation requires **REUNDERWRITING**
 - Credits/debits and special adjustments?
 - Underwriting judgments will not be consistent
- Extremely challenging task

- Plan
- Gather Data
- Build Models
- Analyze
- Implement

- Loss Ratio Distributions
 - Tweedie
 - Gamma
- Heterogeneity within the response (frequency and severity components) require dispersion modeling techniques

Dispersion modeling techniques improve fit


No real intuitive sense of what the scale parameter response is in a dispersion model

Clusters of residuals due difference between frequency and severity signals

- Plan
- Gather Data
- Build Models
- Analyze
- Implement

Interpreting Loss Ratio Model Results

- No a priori expectation
- Shape of predictors will be dictated by how you are priced across all types of risk

County Population Densities

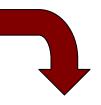
County Population Densities

Problem is magnified as you begin to introduce new variables into the model

- Plan
- Gather Data
- Build Models
- Analyze
- Implement

Implementing the results from Loss Ratio Model

- Black box
 - Loss ratio modeling produces "black box" support
 - Explanatory power of GLM's are greatly diminished
 Buy-in from management, underwriting?
- Short cut
 - Loss ratio model is not reusable
 - Entire dataset must be re-rated each time analysis is updated



- Plan
- Gather Data
- Build Models
- Analyze
- Implement
- Loss development within the predictive modeling process is not necessary if one of the following conditions is met:
 - Case incurred losses at the individual claim level are reasonably accurate
 - Common assumption in short-tailed lines
 - Each claim at a given lag is assumed to develop by the same proportion (i.e. the same development factor can be applied to each claim)
 - Common assumption in auto liability
 - Basic limits losses
 - Claims data matches policy data
- For personal lines the time variable is sufficient
- Workers compensation requires a more rigorous approach

- Plan
- Gather Data
- Build Models
- Analyze
- Implement
- Traditional loss development: aggregate all claims in each cell within the historical triangle on a cumulative basis

<u>Claim</u>	<u>Accident</u> <u>Year</u>	<u>12</u>	<u>24</u>	<u>36</u>	<u>48</u>
000001	2002	0	1,000	1,000	5,000
000021	2002	50	50	50	50
000060	2002	0	0	0	250
000124	2003	300	500	500	
000328	2003	125	400	400	
000443	2003	0	100	2,000	
000776	2004	120	400		
000834	2004	100	200		
000942	2004	0	500		
001001	2005	0		-	
001075	2005	110			
001100	2005	100			
			•		

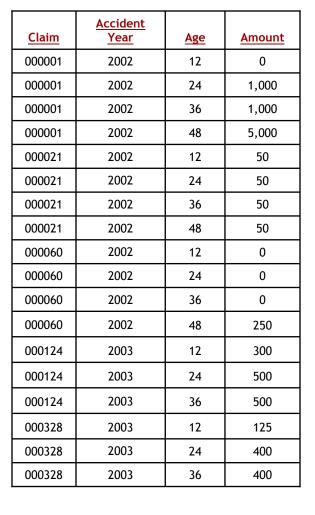
<u>Accident</u> <u>Year</u>	<u>12</u>	<u>24</u>	<u>36</u>	<u>48</u>
2002	50	1,100	2,150	7,450
2003	425	1,425	4,325	
2004	220	1,320		
2005	210		-	

- Plan
- Gather Data
- Build Models
- Analyze
- Implement

- Square the triangle
- Forecast the tail

<u>Accident</u> <u>Year</u>	<u>12</u>	<u>24</u>	<u>36</u>	<u>48</u>
2002	50	1,100	2,150	7,450
2003	425	1,425	4,325	
2004	220	1,320		
2005	210		-	

<u>Accident</u> <u>Year</u>	<u>12</u>	<u>24</u>	<u>36</u>	<u>48</u>	<u>Ultimate</u>
2002	50	1,100	2,150	7,450	
2003	425	1,425	4,325	14,987	
2004	220	1,320	3,385	11,729	
2005	210	1,162	2,979	10,324	



Estimating aggregate reserves does not produce a solution for allocating reserves to individual claims

- Plan
- Gather Data
- Build Models
- Analyze
- Implement

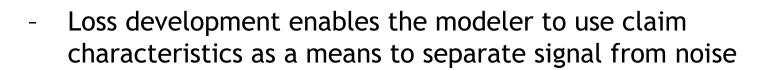
GLM's can be used to develop individual claims to ultimate

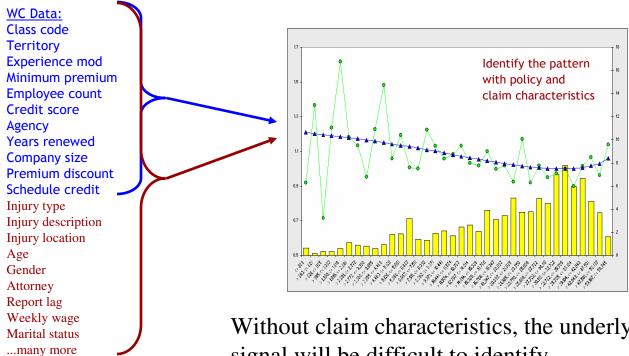
<u>Claim</u>	<u>Accident</u> <u>Year</u>	<u>12</u>	<u>24</u>	<u>36</u>	<u>48</u>
000001	2002	0	1,000	1,000	5,000
000021	2002	50	50	50	50
000060	2002	0	0	0	250
000124	2003	300	500	500	
000328	2003	125	400	400	
000443	2003	0	100	2,000	
000776	2004	120	400		•
000834	2004	100	200		
000942	2004	0	500		
001001	2005	0		•	
001075	2005	110			
001100	2005	100			

- Plan
- Gather Data
- Build Models
- Analyze
- Implement

Development Challenges

- Functional relationship between variance and mean
 - Poisson
 - Binomial/Gamma process
 - Zero Inflated model
- Functional relationship between characteristics and incremental payment
 - Multiplicative
 - Additive
 - Logit
 - Non linear
- Squaring up the triangle on individual claims means that reserves for IBNR claims are not estimated
 - Workers compensation reporting lags have regulatory guidelines

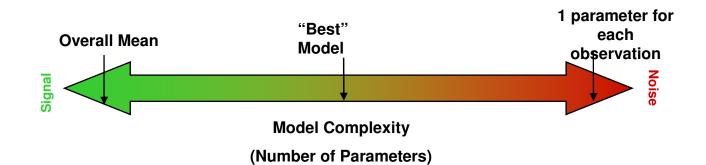



Development Advantages

- Plan
- Gather Data
- Build Models

 $\mathbf{\nabla}$

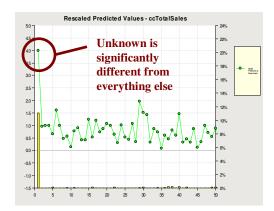
- Analyze
- Implement



Without claim characteristics, the underlying signal will be difficult to identify

- Plan
- Gather Data
- Build Models
- Analyze
- Implement

Once modeled, policy characteristics are then used to translate the smoothed patterns using information available when the policy is written


• Plan

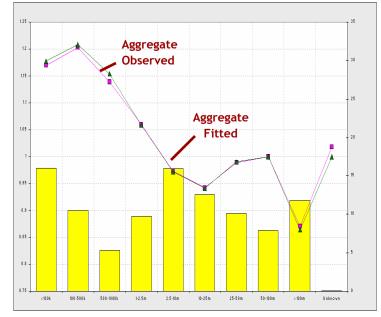
- Gather Data
- Build Models
- Analyze
- Implement

Challenges:

- Traditional qualitative tests tend not to be as conclusive in commercial lines:
 - Standard error test leans towards underfitting the model
 - Chi-Square tests leans towards overfitting the model
 - Tripped up on Unknown levels

- Solution: Rely on additional diagnostics
 - Balance
 - Bias
 - Lift
 - Retrospective




Balance:

• Plan

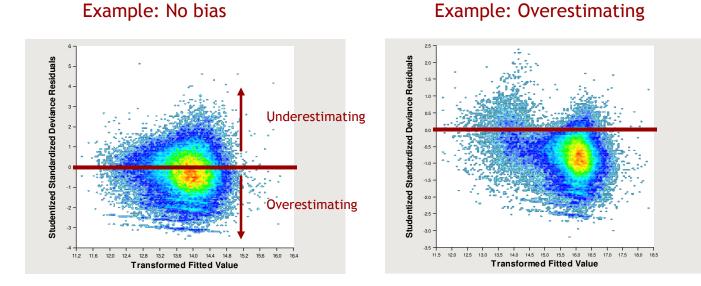
- Gather Data
- Build Models
- Analyze
- Implement

- Aggregate fitted results should be close to aggregate observed data across data dimensions

Account Size: Out of balance, too low for smaller accounts

Account Size: Used a more predictive model structure

• Plan

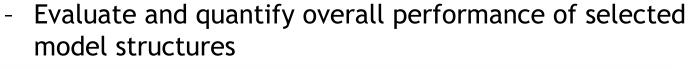

Bias:

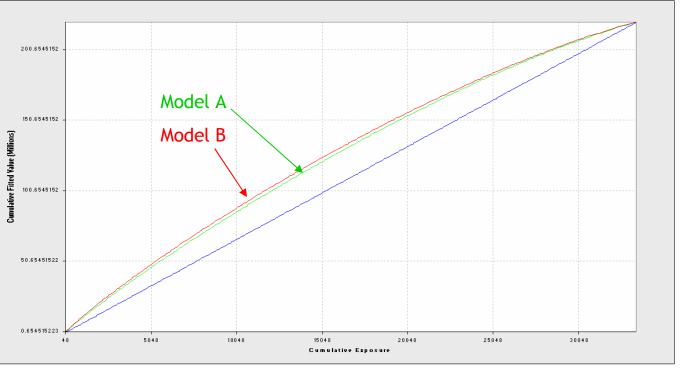
Build Models

Gather Data

- Analyze
- Implement

- Compare observed versus fitted data across all accounts

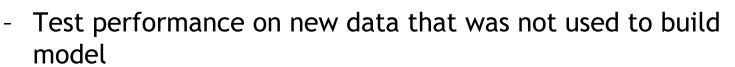

- Similar to balance but now focus is on individual accounts

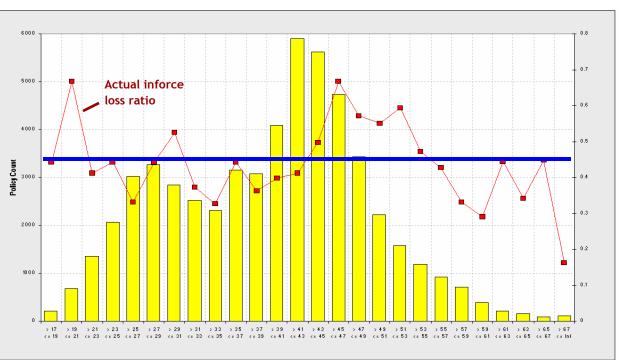

• Plan

• Gather Data

Lift

- Build Models
- Analyze
- Implement




- Model B is producing a greater lift than Model A

Retrospective:

 $\mathbf{\nabla}$

- Plan
- Gather Data
- Build Models
- Analyze
- Implement

Proposed Underwriting Score:

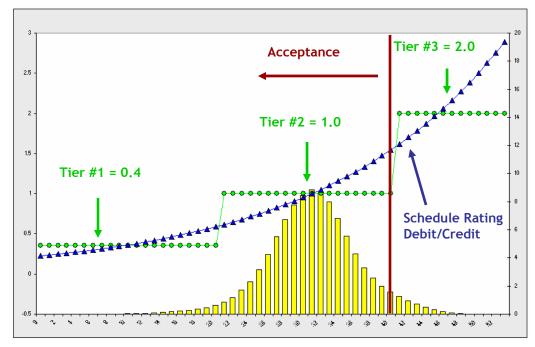
- Flat loss ratio from the latest inforce data set
- Volatility in loss ratio driven by immature data

Implement

- Plan
- Gather Data
- Build Models
- Analyze
- Implement
- Advanced techniques and technology enable the analyst to look at more explanatory variables than previously imagined
 - <u>**Results:</u>** Indications from predictive models will introduce factors not currently used in rating and relativities for existing factors that may be significantly different from current relativities</u>
 - **Dilemma:** How to incorporate indications into existing rating plan?
 - Systems constraints
 - Tradition
 - Agency resistance
 - Market perception
 - Regulatory considerations

Implement

- Plan
- Gather Data
- Build Models
- Analyze
- Implement

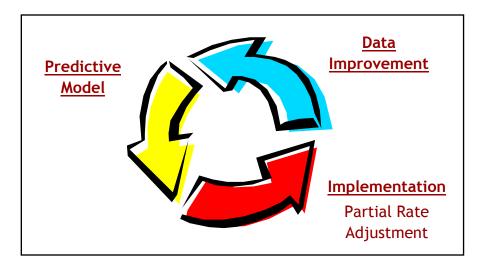

- Consistency between underwriting and pricing
 - Underwriting emphasis is needed because of the uniqueness of each exposure
 - Overlap in qualitative assessments?
- Moving from yes/no underwriting scores to rate refinement
 - Underwriting scores help cherry-pick but do not establish the right rate for every risk
 - Either through rating or underwriting (example: tiers)
- Buy-in of distribution channels
 - Independent agents
 - MGA's
- Sizing up the competition
 - Industry focus on underwriting refinement makes it difficult to evaluate competitors

Implement

- Plan
- Gather Data
- Build Models
- Analyze
- Implement

- Scoring solutions allow multiple approaches toward implementation
 - Accept/Reject criteria
 - Tiering
 - Schedule Rating

Underwriting Score: Captures difference between indications and manual rate


Wrap-up

- Plan
- Gather Data
- Build Models
- Analyze
- Implement
- <u>GOAL</u>: Document decisions and communicate results
- Create required filing support
- Decisions made during the review will need to be documented in accordance with actuarial standards
- Prioritize future actions

Wrap-up

- Plan
- Gather Data
- Build Models
- Analyze
- Implement
- Success in the personal lines marketplace has been widely publicized
- Important to remember that transition to current level of sophistication in the personal lines marketplace took many years
- Can get a lot of value through small incremental steps

Mission:

EMB America seeks to help our clients solve complex problems and identify opportunities by providing the appropriate blend of value-added consulting and state-of-theart software. In so doing, EMB America strives to develop long-term relationships with clients and be the consulting firm of choice for the business community.

For information:

- Phone: 858.793.1425
- Email: inquiries@embamerica.com
- Website: www.embamerica.com

