

Predictive Modeling Lifecycle

A Practical Approach: What's Important & What's Hard

Data Understanding, Data Preparation, and Modeling

CAS Predictive Modeling Seminar Las Vegas, NV October 11-12, 2007

Martha A. Winslow, FCAS, MAAA

Phases of the predictive modeling lifecycle

From CRISP_DM Process Model 1.0, 2000

A modeler's view of project lifecycle

Modelers focus on the data and the modeling. They are notoriously poor project planners (a broad generalization)...and management is too optimistic.

Planned Gantt Chart

Acquire data	Prepare data	Model	
Actual Gantt Chart			
Acquire data	Prepare data		Model

Data Understanding Phase

Tasks

- Produce a preliminary list of predictive data elements (internal and external)
- Review sources of internal data and identify data elements that should be captured in the future
- Identify potential external data sources and cost and identify data elements that should be acquire from outside sources
- Collect initial data
 - Acquire data dictionaries
- Explore data searching for trends and anomalies to gain understanding and ideas for the modeling phase
- Identify regulatory requirements/constraints in jurisdictions where the company operates
- Verify data quality
 - Does the data meet the business objectives?

What's Important

- Tying data element selection back to the business objectives
- Careful data element identification and exploration lays the groundwork for a successful model

What's Hard

- Valuable external data may be costly to acquire
- Regulators may disallow potentially highly predictive variables, e.g. credit score
- Identifying solutions to data quality problems

DATA UNDERSTANDING PHASE

Start identifying possible independent variables by brainstorming

- For example, what information might bear any statistical relationship to the likelihood, nature, and severity of a claim?
- At this stage, we should not judge any idea to be bad, unacceptable, or impractical Brainstorming Flip Chart

Data Element	Why it might be good

Perform a preliminary evaluation and initial culling of potential variables identified during the brainstorming step

		Potential			Ease of Gathering			Continue			
Data Element	Val	Value	Acceptability		Source	Electronic/	Existing/	Overall Avail	investigation ?	Responsibility	
	Hi/Lo	Comments	Hi/Lo	Comments		Manual	New	ability	Yes/No	Who	When

5 = Bad

Complete a follow-up assessment for data elements that appear to have potential for the model

1 = Good

5 = Bad

Data Preparation Phase

Tasks

- Select data for modeling and univariate analyses
- Clean data
- Derive new variables
- Merge/join tables and construct the modeling data
- Aggregate records to level to be used in modeling

What's Important

- Validate data elements and structure
- Matching data from various systems (e.g., policy issuance, claims, billing, etc.)

What's Hard

- Matching data from various systems (e.g., policy issuance, claims, billing, etc.)
- Merging data from external sources
- May discover unexpected data issues due to initial use of data elements

Inevitably, there are numerous data issues to address/resolve

Typical Data Issues

- Data is usually in the wrong format for modeling
- Poor quality can cause model convergence problems and must be dealt with
- Many derived variables need to be added
- Missing characteristics for prior policy periods (e.g., insurance scores not ordered for all of historical data)

The modeling effort should leverage a broad array of information sources/types

Drivers of Value — Automobile Insurance Customer

	Retention	Loss Experience
Credit history	~	~
Billing/pay plan information	~	~
Prior non-chargeable and comprehensive claims		~
Cross-line policies and claims	~	~
Time on job and time at present address	~	~

The good news...you probably have, but may not use, much of the data you need

Frequently, the company's basic data structure has to be reformatted

Policy Number	Policy Year	Coverage	Period Start Date	Risk Coding Variables	Earned Exp.	Claim Count	Incurred Loss	
1	2003	BI	01/01/03		1.0	0	0	
1	2003	PD	01/01/03	Age, sex, marital status, etc.	1.0	1	2500	
1	2003	MED	01/01/03		0.5	0	0	
1	2003	MED	01/01/03		0.5	1	250	
Many more records								

Likely Current Data Structure — Coverages in Rows

Advantages:

- Data are probably already stored this way
- Multiple records from mid-term changes only present for affected coverages
- For studying one coverage/peril at a time, file size can be smaller than alternative

Required Data Structure — Coverages in Columns

				Bodily Injury			Property Damage, etc.		
Policy Number	Policy Year	Period Start Date	Risk Coding Variables	Earned Exp.	Claim Count	Incurred Loss	Earned Exp.	Claim Count	Incurred Loss
1	2003	01/01/03	Age, sex, marital status, etc.	1.0	0	0	1.0	0	
2	2003	01/01/03		1.0	1	20,000	1.0	1	5,000
3	2003	01/01/03		0.5	0	0	0.5	0	
3	2003	01/01/03		0.5	1	1,250	0.5	1	500

Many more records...

Advantages:

- Can combine "scored" results across coverages/perils
- Total file storage requirement could be smaller (risk variable coding not repeated)

Disadvantages:

- "Pivoting" the data is not always a trivial step
- Varying number of transactions and dates by coverage can complicate things

More granular detail can highlight other data problems

Policy change endorsement records cause problems if done improperly

Policy Number	Policy Year	Policy Start Date	Transaction Date	Age	Limit	Premium		
1	2003	01/01/03	01/01/03	39	100000	500		
1	2003	01/01/03	05/01/03	40	100000	-250		
1	2003	01/01/03	05/01/03	40	250000	300		
Many more records								

Example:

- By inappropriately incrementing driver age at endorsement time, records with negative values do not get aggregated
- Resulting negative values render that record unusable, and it is discarded
- Total premium and exposure for this policy are then overstated

Other Typical Challenges

- Earnings are inaccurate
- Policy-level calculated values are wrong (e.g., number of vehicles or drivers on the policy are inaccurate)
- Cancel-rewrites or policy transaction system changes
 - Policy tenure can be lost
 - Link to historical policy information and claim activity can be lost
- Cross-line information
 - Missing or inaccurate match-key fields
 - Non-aligned effective dates
- Claim data
 - Inadequate match-key data
 - Claim counts one per event vs. one per claimant

Modeling Phase

Tasks

- Perform initial univariate analysis
 - Evaluate results in light of business objectives to select/prioritize variables for multivariate analysis
- Conduct initial multivariate analysis
- Reduce data dimensions, eliminate redundant variables and group numeric variables (e.g. driver age)
- Build a series of models that will meet regulatory requirements in all jurisdictions
 - Note: Need to identify/confirm state regulatory variations
- Select desired variables for inclusion in rating formula in light of business objectives and with view of ease of implementation
- Finalize multivariate models

What's Important

- Consideration of regulatory acceptance of desired variables
- Consideration of agency acceptance of desired variables
- Design model output for users; e.g. reason codes

What's Hard

- Getting the actuarial relationships right
- Balancing level of complexity (number of tiers and introduction of new variables), which improves precision, with implementation realities
- Knowing when to stop, i.e. how many models to try

ILLUSTRATIVE

Univariate and multivariate analyses are the foundation for defining the rating variables

Decisions about what variables will survive in the model must balance contribution to model "lift" and acceptability to stakeholders

© 2007 Towers Perrin

Phases of the predictive modeling lifecycle

From CRISP_DM Process Model 1.0, 2000

Speaking today

Martha Winslow

Contact Information

Senior Consultant Towers Perrin 7650 Edinborough Way Suite 500 Minneapolis, MN 55435-5978 Phone: +1 952 842 5627 Fax: +1 952 842 5666 E-mail: martha.winslow@towersperrin.com