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Agenda

Data validation
Hypothesis building
Model building
Model testing

Monitoring model results
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Data validation

Goals
Validate reasonableness of data
Understand key patterns in data

Understand changes in data and underlying business
through time
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Data validation

Histogram is a simple tool for reasonability testing of
modeling database
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Data validation

Mosaic Plot shows the distribution of predictors in two

dimensions 1 2
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Data validation

Missing data plot shows the relationship of missing data
elements
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Hypothesis building

Goals
Perform initial analysis of potential predictor variables

Limit the list of predictor variables to be employed in
subsequent phases of model building

Further reasonability testing of data
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Hypothesis building

Demographic variable 1
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Hypothesis building

Correlation web concisely summarizes a correlation matrix
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Model building

Model building is an iterative process

Understanding patterns and relationships throughout this
process is critical
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Model building

Partial plots are a key tool to visualize predictor variables
throughout the model building process
What is a partial plot?

Linear predictor =k + B.,X, + B, X, + B;X; + B,X,
Predicted value = (ek) x (eP1X1) x|(eP2X2) x (eP3X3) x (eP4X4)

Partial plot demonstrates an individual predictor variable’s
contribution to final prediction
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Model building

Partial plot demonstrates an individual predictor variable’s
contribution to final prediction
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Model building

Partial plot with modified scatter plot of variable

Rate relativity
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Model building

Low P-value due to variability
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Model building

Low P-value due to little differentiation
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Model building

Time consistency plot is a critical tool for numeric predictors
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Model building

Partial plot for a factor variable
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Model testing

Likely the most critical visualizations in predictive
modeling work

Management’s perception of a project’s success will likely depend
on these visualizations

Holdout tests

Cross-validation tests
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Model testing

Lift chart shows overall model performance

Loss ratio
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Model testing

ROC curve shows overall model performance

Holdout sample ROC curve
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Model testing

Classical cross-validation exhibit

Out of sample error
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Monitoring model results

The work does not end when the lift chart looks good

Monitoring tools
Decile management
Exception analysis
Model versus actual results
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Monitoring model results

Decile management Retention by decile
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Monitoring model results

Average score over time

Average score by quarter
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Monitoring model results

Loss ratio of model exceptions

Loss ratio of underwriting exceptions
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Summary

Capture the statistical concept in a graphical image
Limit the number of concepts presented on a single slide
Listen to your audience

Present results throughout the life of the project
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