eλrnix

Price Optimization

The state	319.57 38 Can	1 0 Agent	46.09 0
2	420.00 41 200	1 0 Broker	53.59 0
3	368.91 04 East	1 O Broker	146.09
4	360.15 46 North	1 1 Broker	153.59
5	573.48 49 North	0 0 Broker	146.09
6	40 Moro	0 0.61010	126.0

Price Optimization-Practical Challenges

Presented by:

Lee M. Bowron, ACAS, MAAA lee@earnix.com www.earnix.com

October 6, 2008

San Diego

Price Optimization

1 I	319.57	18 Lan	1 0	Agen	146.09 0
2	420.00	63 50uth	1	o Broker	153.59 0
3	368.91	44 East	1	O'Broker	146.09 0
4	368.15	46 North	tit	1 Broker	153.59
5	573.48	49 North	0	0 Broker	146.09
6	349.67	40 100ru		0. Brond	126.03
1		3 47 5012			146.0

What is an insurance CEO's number one concern?

From Dow Jones:

Insurance executives say insurance pricing weakness is the biggest risk their industry faces in the next few years.

Company View

Customer View

Price Optimization

and the	319.57	38 Lan	1 0 Agen	146.09 0
2	420.00	41 South	1 0 Broker	153.59 0
	368.91	AA FAST	1 0 proket	146.09 0
4	368.15	46 North	1 Broker	106.96
5	501,74	49 North	1 D.Broken	153.59
1 6	573.48	40 North	0 D.Broke	140.0
	349.6	47 East	0 0 Broks	1145.0

Many concepts are overlapping...

- Lifetime value
- Demand modeling
- Competitive analysis
- Retention modeling
- Scenario modeling
- Price Optimization
- Others?

Unlike other predictive modeling projects, you must "push" more to the end user (the underwriter, the product manager, the pricing actuary) Price Optimization

1 319.57	38 Los	0 Ager 146.09 0
2 420.00	63 South	0 Broker 155.07
4 366.1	46 North	1 1 Broker 106.90
6 573	48 49 North	0 0 Broker 146.09
7 349	AT East	O Broken

The Renewal Dilemma

- •The more tenure, the better the loss ratio
- •But switching can be hard, tenure = value
- Most companies will ignore renewals or not give the full actuarial discount – is that the optimal treatment?

319.57 38 Can 1 0 Agen	146.09 0
2 420.00 41 2000 1 0 Brown	153.59.0
3 368.91 03 East 1 0 Broker	146.09 0
4 368.15 46 North 1 Broker	106.90
5 501.7 48 49 North 0 0 Broker	146.09
6 5/3 40 North 0 0 Broke	126.03
7 47 East 0 0 Eron	146.0

Demand Modeling

- Given a quote, will we convert?
- Start getting the data now (the ether of the renewal offer)
- Different for new business and renewals
- A key variable is the amount of rate change as well as the tenure of the policy

ΕÅ**R**NIX I

1 3	19.57 3	1 isouth	1 04	roker	146.09 0
2	120.00 7	63 South	1 01	sroker	153.59 0
3	368.15	44 East	10	Broker	106.96
5	501.74	49 North	1 1	Broker	153.59
6	573.40	40 North		O Broken	125.03
7	29010	47 East		0 Brown	146.0

GLMs can be used to model demand

Logistic regression analyzes binomially distributed data of the form

$$Y_i \sim B(p_i, n_i), \text{ for } i = 1, ..., m,$$

where the numbers of Bernoulli trials *ni* are known and the probabilities of success *pi* are unknown. An example of this distribution is the fraction of flowers (*pi*) that germinate after *ni* are planted.

EARNIX Price Optimization

Demand models (Continued)

The model is then that for each trial (value of *i*) there is a set of explanatory/independent variables that might inform the final probability. These explanatory variables can be thought of as being in a *k* vector *Xi* and the model then takes the form

$$p_i = \mathbf{E}\left(\left.\frac{Y_i}{n_i}\right| X_i\right)$$

Demand Models (Continued)

The logits of the unknown binomial probabilities (*i.e.*, the logarithms of the odds) are modeled as a linear function of the *Xi*.

$$\operatorname{logit}(p_i) = \ln\left(\frac{p_i}{1-p_i}\right) = \beta_1 x_{1,i} + \dots + \beta_k x_{k,i}.$$

Note: there are other ways to analyze demand, but make sure you are doing it in a statistically significant manner.

1 319.57 38 Lan 1	0 Agen	46.09 0
2 420.00 41 200th 1	o Broker	53.59 0
3 368.91 44 East 1	O Broker	146.09 0
4 300.74 46 North 1	1 Broker	153.59
5 573.48 49 North 0	0 Broker	146.09
7 349.67 40 East 0	O Broken	120.07

Effect of Previous Claim on Renewal Demand

October 6, 2008

CAS Predictive Modeling Seminar

San Diego

100	19.57 38	couth	0 Agen	46.09 0
2	420.00 41	stouth	1 0 Broker	153.59.0
3	368.91 0	4 East	1 O'Broker	146.09 0
4	368.15	16 North	1 1 Broker	106.10
5	501.7	49 North	0 0 Broker	146.09
6	349.67	40 North	0 0 610101	126.09
7	343.0	47 East	0 0 Broke	146.0

Effect of Premium Increase on Renewal Demand

CAS Predictive Modeling Seminar

319.57 38 Com	0 Agera	46.09 0
420.00 41 50001 1	0 Broken	153.59 0
2 368.91 63 50001 1	0 Broken	146.09 0
3 368.15 44 East 1	O Broker	106.96 0
9 501.74 46 North 1	1 Broke	153.59
5 573.48 49 North 0	0 Broker	146.09
6 249.67 40 NOTUT	0.61010	126.09
7 47 East		146.0

Effect of Tenure on Renewal Demand

CAS Predictive Modeling Seminar

1 319.57 38 Lon 1	0 Ager	46.09 0
2 420.00 41 1	0 Broker	153.59.0
3 368.15 44 East 1	O Broker	106.96 0
5 501.74 46 Worth 1	0.Broket	153.59
6 573.48 40 North 0	0 Broker	126.07
7 5451 47 East		146.0

Next step is optimization

The "Objective Function"

Given an objective of X subject to the condition Y what is the price I should charge?

Price Optimization	

1	319.57	41 South	1 0 Agerk	146.09 0
2	368.91	63 South	1 0 Broker	146.09 0
4	368.15	46 North	1 1 Broker	106.90
6	573.48	40 North	0 0 5rohe	146.09
1 7	24210	47 East	0 0 Bron	145.0

Xs and Ys

Optimization is not blind profit maximization!

- Possible Objectives (X)
- More profit
- More volume
- More retention

Possible Constraints (Y)

- Rate Change
- Actuarial Indications
- Volume
- Retention
- Profit

Price Optimization

and the	319.57	38 Lan	1 0 Agen	46.09 0
1	420.00	41 South	1 O Broker	153.59 0
2	368.91	63 50001	1 0 Broker	146.09 0
3	368.15	44 East	1 O Broker	106.96 0
1 1	501,74	46 Noroth	1 1 Brones	153.59
5	573.48	49 North	0 0 broker	146.09
6	249.6	7 40 100101	0 0,610	126.07
	1	47 E804		146.0

Lifetime Value

- Lifetime value is the present value of a piece of business today to the company
- Easy to explain, but hard to implement
- Example: a 25 year old single male buys a liability only policy
- Will he eventually get full coverage?
- Will he eventually get married (and stay with the company)?
- Will he buy a homeowner's policy from us?
- Will he buy life insurance?

Price Optimization	1 319.57 35.600 1 2 420.00 41 South 1 3 368.91 63 South 1 4 368.15 44 East 1 4 368.15 44 East 1 5 501.74 46 North 1 6 573.46 49 North 1 6 549.67 40 North 0
	7 349.07 7 349.07 47 East

Optimization

- •Once you have defined the objective function, you must find the optimal points
- •Use calculus to find the minimum/maximums
- Because of the complexity of the objective function and the constraints, this is a difficult problem to solve.

Price Optimization	1 319.57 38 1 319.57 38 2 420.00 41 3 368.91 6 4 368.15 4 5 501.74 4 5 901.74 48
	6 573.40 7 349.67 7 349.52

10 T	319.57	38 Lan	1 0 Agers	146.09 0
	420.00	41 5000t	1 O'Brokm	153,59.0
	368.91	63 5000	1 0 Broker	146.09 0
-	368.15	44 Earth	1 O Broket	106.96
	501.74	40 North	1 Direkt	153.59
	573.4	8 40 Morth	0 0 Brohn	146.09
	349.6	7 40 Hast	0 O Brokt	126.07
1	1000	22 97 97		140.0

Monitoring

- One of the benefits of an optimization type analysis are detailed predictions of the amount and type of renewals and new business.
- Deviations can be sign of a "model breakdown" competitors changing rates, changes in underlying demand.
- Can be a tool for not only what to charge but when to change rates.

1 319.57	41 South	1 0 Agen	46.09 0
2 420.00	63 South	1 0 Broker	146.09 0
4 368.15	46 North	1 1 Broker	106.96
6 573.4	8 49 North	0 0 Broker	146.09
7 349.0	47 East	0 Broken	100.0

Arguments against optimization

- 1.We are getting away from expected costs.
- •European companies are monitoring this issue, they haven't seen major problems.
- Hard market would likely see focus return to costs.

Arguments against optimization

2. "I want to maximize PIF and take no policies below the cost of capital, therefore I don't want to under price (capital destruction) and I don't want to overprice (I won't sell as many policies)." **Price Optimization**

1 319.57 38 Can	1 0 Agent 146.09 0
2 4/20.00 3 368.91 63 500th	1 0 Broker 155.09 0
4 368.15 44 North	1 1/Broket 106.96 0
6 573.48 49 North	0 0 Broker 146.09
7 349.07 47 East	O BROWER LAG.O

Arguments against optimization

Answer: Focus on Marginal ROE

- •Determine the amount of expenses fixed over the policy term.
- •Throw these OUT!

•If fixed expenses are 10% of last year's premium, and you need to price to a 4% underwriting profit, you can now price a policy to -6% underwriting profit and still make your return on capital.

Price Optimization

2 420.00 41 2000 2 368.91 63 South 1 0 Broker 153.59 0 3 368.91 64 East 1 0 Broker 146.09 3 368.15 44 East 1 0 Broker 146.09
3 368.91 04 East 1 0 Broker 146.09
263.19
4 501 74 46 North 1 1 Broker 153.59
5 5011 49 North 0 0 Broker 146.0
6 349.67 40 Moron 0 0 600m 125.0

Regulatory Issues

Regulation – Open Issues

- Optimization began in Europe and Israel
 where there is little rate regulation.
- •Easier to implement in commercial lines.
- •Might be possible to optimize a regulated line if you have related products (example: worker's comp)
- •Personal lines implementation will vary by state.

Price Optimization

1 319.57 38 Los	0 Ageta 146.09 0
2 420.00 41 1 2 219 91 63 South 1	0 Broker 153,59 0
3 368.15 44 East 1	O Broker 106.96
5 501.74 46 North 1	0 Broker 153.59
6 573.48 40 North	0. Broker 146.0
7 345.0 47 East	O DISTORT

Regulatory Issues

Regulation – Open Issues

Most companies don't currently file actuarially indicated rates for every cell

- Ignored Classification Issues (Renewals versus New Business)
- Credibility
- Competitive Issues
- Stability

Price Optimization

319.57 38 Lon 1	O Agen	146.09 0
2 420.00 41 South 1	0 Broker	153.59 0
3 368.91 03 East 1	OFreker	146.09 0
4 368.15 46 North 1	1 Broker	106.96
5 501.74 49 North	DErcher	155.09
6 573.40 North 0	0. Broke	126.03
7 349,67 47 East	0 Brois	146.0

What is optimization?

Optimization is a tool to assist rating judgment to balance these factors as well as actuarial considerations, it's just formalizing what we currently do.

1	319.57 38 Law	h 1 0A	gern Broker 14	6.09 0
2	368.91 63 500 368.91 63 500	th 1 0	Broker 1	46.09 0
1	368.15 46 No 501.74 46 No	ath 1	Broker	153.59
6	573.48 49 W	orth 0	0 Broker	146.09

Price optimization in the travel industry

Differences:

- Demand can be more elastic in travel than insurance due to ease of substitution. This will vary by consumer and (in the case of airlines) the specific route.
- High variable costs in the insurance industry means that one less policy causes significantly less costs.
- Supply is highly constrained in the short term for travel, especially hotels. (Check New York hotel rates)

EÁRNIX Price Optimization

Final Thoughts

- People like optimized prices Optimization makes some prices more affordable. This could lower uninsured rates since marginal customers are the most elastic.
- Entrenched in Europe
- Still early in the process for the US early adapters may make a lot of money (See "Credit Scoring" circa 1990)
- Regulatory impact unclear