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Modeling Number of ClaimsModeling Number of Claims
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Number of Claims by County (Discrete 
Distribution)
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Problems with Regresssion ModelProblems with Regresssion Model

Number of claims is discrete

Claim sizes are skewed to the right

Probability of an event is in [0,1]

Variance is not constant across data 
points i

Nonlinear relationship between X’s and 
Y’s

Number of claims is discrete

Claim sizes are skewed to the right

Probability of an event is in [0,1]

Variance is not constant across data 
points i

Nonlinear relationship between X’s and 
Y’s
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Generalized Linear Models - GLMsGeneralized Linear Models - GLMs

Fewer restrictions

Y can model number of claims, probability of 
renewing, loss severity, loss ratio, etc.

Large and small policies can be put into one model

Y can be nonlinear function of X’s
Only some nonlinear relationships can be modeled

Classical linear regression model is a special case

Fewer restrictions

Y can model number of claims, probability of 
renewing, loss severity, loss ratio, etc.

Large and small policies can be put into one model

Y can be nonlinear function of X’s
Only some nonlinear relationships can be modeled

Classical linear regression model is a special case
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Classical Multiple Linear RegressionClassical Multiple Linear Regression

Yi = a0 + a1Xi1 + a2Xi2 …+ amXim + ei

Yi are the response variables 
Xij are predictors 

i subscript denotes ith observation 

j subscript identifies jth predictor

Yi = a0 + a1Xi1 + a2Xi2 …+ amXim + ei

Yi are the response variables 
Xij are predictors 

i subscript denotes ith observation 

j subscript identifies jth predictor
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One Predictor:    Yi = a0 + a1XiOne Predictor:    Yi = a0 + a1Xi
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Classical Multiple  Linear Regression:  
Solving for ai

Classical Multiple  Linear Regression:  
Solving for ai
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Classical Multiple Linear RegressionClassical Multiple Linear Regression

μi = E[Yi] =  a0 + a1Xi1 + …+ amXim

Yi is Normally distributed random 
variable with constant variance σ2

Want to estimate μi = E[Yi] for each i

μi = E[Yi] =  a0 + a1Xi1 + …+ amXim

Yi is Normally distributed random 
variable with constant variance σ2

Want to estimate μi = E[Yi] for each i
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Response Yi  has Normal Distribution

-12 -7 -2 3 8   μ i 
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Generalized Linear Models - GLMsGeneralized Linear Models - GLMs

Same goal as Linear Model

Predict :   μi  =  E[Yi] 

Same goal as Linear Model

Predict :   μi  =  E[Yi] 



13

Generalized Linear Models - GLMsGeneralized Linear Models - GLMs

g(μi )= a0 + a1Xi1 + …+ amXim

g( ) is a function of the dependent variable
Referred to as the link function
A transformation such as log

E[Yi] = μi =  g-1(a0 + a1Xi1 + …+ amXim)
Must reverse the transformation to get original dependent 
variable back

Yi can be Normal, Poisson, Gamma, Binomial, Compound 
Poisson, …

Variance can be modeled

g(μi )= a0 + a1Xi1 + …+ amXim

g( ) is a function of the dependent variable
Referred to as the link function
A transformation such as log

E[Yi] = μi =  g-1(a0 + a1Xi1 + …+ amXim)
Must reverse the transformation to get original dependent 
variable back

Yi can be Normal, Poisson, Gamma, Binomial, Compound 
Poisson, …

Variance can be modeled
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GLMs Extend Classical Linear RegressionGLMs Extend Classical Linear Regression

If link function is identity:  g(μi) = μi

And Yi has Normal distribution

→ GLM gives same answer as 
Classical Linear Regression*

* Least squares and MLE equivalent for Normal dist.

If link function is identity:  g(μi) = μi

And Yi has Normal distribution

→ GLM gives same answer as 
Classical Linear Regression*

* Least squares and MLE equivalent for Normal dist.



15

Exponential Family of Distributions –
Canonical Form

Exponential Family of Distributions –
Canonical Form
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Some Math Rules: RefresherSome Math Rules: Refresher
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Normal Distribution in Exponential FamilyNormal Distribution in Exponential Family
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Normal Distribution in Exponential FamilyNormal Distribution in Exponential Family
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Poisson Distribution in Exponential FamilyPoisson Distribution in Exponential Family

⎭
⎬
⎫

⎩
⎨
⎧ −

−⋅
==

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

==

−

−

)!ln(
1

)(lnexp]Pr[

!
lnexp]Pr[

!
]Pr[

yyyY

y
eyY

y
eyY

y

y

μμ

μ

μ

μ

μ

θ



20

Poisson Distribution in Exponential FamilyPoisson Distribution in Exponential Family
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Compound Poisson DistributionCompound Poisson Distribution

Y = C1 + C2 + . . . + CN

N is Poisson random variable
Ci are i.i.d. with Gamma distribution

This is an example of a Tweedie distribution

Y is member of Exponential Family

Y = C1 + C2 + . . . + CN

N is Poisson random variable
Ci are i.i.d. with Gamma distribution

This is an example of a Tweedie distribution

Y is member of Exponential Family
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Members of the Exponential FamilyMembers of the Exponential Family

• Normal
• Poisson
• Binomial
• Gamma
• Inverse Gaussian
• Compound Poisson (Tweedie)
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Variance StructureVariance Structure

E[Yi] = μi = b' (θi) → θi = b' (-1)(μi ) 

Var[Yi] = a(Φi) b' ' (θi) = a(Φi) V(μi)

Common form: Var[Yi] = Φ V(μi)/wi

Φ is constant across data but weights applied to 
data points

E[Yi] = μi = b' (θi) → θi = b' (-1)(μi ) 

Var[Yi] = a(Φi) b' ' (θi) = a(Φi) V(μi)

Common form: Var[Yi] = Φ V(μi)/wi

Φ is constant across data but weights applied to 
data points
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V(μ)
Normal μ 0

Poisson μ
Binomial μ (1-μ)
Tweedie μ p, 1<p<2
Gamma μ 2

Inverse Gaussian μ3

Recall:  Var[Yi] = Φ V(μi)/wi

Variance Functions V(μ)
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Variance at Point and Fit Variance at Point and Fit 

A Practioner’s Guide to Generalized Linear Models: A CAS Study Note
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Normal
vs Gamma (Inverse Link)

Primary Paid = f(Initial ndemnity Reserve)

NormalNormal
vsvs Gamma (Inverse Link)Gamma (Inverse Link)

Primary Paid = Primary Paid = f(Initialf(Initial ndemnityndemnity Reserve)Reserve)
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Variance of Yi and Fit at Data Point iVariance of Yi and Fit at Data Point i

Var(Yi)  is big → looser fit at data point i

Var(Yi)  is small → tighter fit at data 
point i

Var(Yi)  is big → looser fit at data point i

Var(Yi)  is small → tighter fit at data 
point i

)Var(
1fit  of Tightness

iY
  ∝
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Why Exponential Family?Why Exponential Family?

Distributions in Exponential Family 
can model a variety of problems

Standard algorithm for finding  
coefficients a0, a1, …, am

Distributions in Exponential Family 
can model a variety of problems

Standard algorithm for finding  
coefficients a0, a1, …, am
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Modeling Number of ClaimsModeling Number of Claims

::::
101F10
102M9
202M8
202M7
102F6
001F5
102F4
001F3
001F2
002M1

Claims in 5 YearsTerritorySexPolicy
Number of
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Assume a Multiplicative ModelAssume a Multiplicative Model

μi = expected number of claims in 
five years

μi = BF,01 x CSex(i) x CTerr(i)

If i is Female and Terr 01
→ μi = BF,01 x 1.00 x 1.00

μi = expected number of claims in 
five years

μi = BF,01 x CSex(i) x CTerr(i)

If i is Female and Terr 01
→ μi = BF,01 x 1.00 x 1.00
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Multiplicative ModelMultiplicative Model

μi = exp(a0 + aSXS(i) + aTXT(i))

μi = exp(a0) x exp(aSXS(i)) x exp( aTXT(i))

i is Female → XS(i) = 0; Male → XS(i) = 1

i is Terr 01 → XT(i) = 0; Terr 02 → XT(i) = 1

μi = exp(a0 + aSXS(i) + aTXT(i))

μi = exp(a0) x exp(aSXS(i)) x exp( aTXT(i))

i is Female → XS(i) = 0; Male → XS(i) = 1

i is Terr 01 → XT(i) = 0; Terr 02 → XT(i) = 1
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Values of Predictor VariablesValues of Predictor Variables

0010F10
1021M9
1021M8
1021M7
1020F6
0010F5
1020F4
0010F3
0010F2
1021M1

XT(i)TerritoryXS(i)SexPolicy
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Natural Log Link FunctionNatural Log Link Function

ln(μi)  = a0 + aSXS(i) + aTXT(i)

μi  is in  (0 , ∞ )

ln(μi) is in ( - ∞ , ∞ )

ln(μi)  = a0 + aSXS(i) + aTXT(i)

μi  is in  (0 , ∞ )

ln(μi) is in ( - ∞ , ∞ )
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Poisson Distribution in Exponential FamilyPoisson Distribution in Exponential Family
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Natural Log is Canonical Link for PoissonNatural Log is Canonical Link for Poisson

θi = ln(μi)

θi = a0 + aSXS(i) + aTXT(i)

θi = ln(μi)

θi = a0 + aSXS(i) + aTXT(i)
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Estimating Coefficients a1, a2, .., amEstimating Coefficients a1, a2, .., am

Classical linear regression uses least 
squares

GLMs use Maximum Likelihood 
Method

Solution will exist for distributions in 
exponential family

Classical linear regression uses least 
squares

GLMs use Maximum Likelihood 
Method

Solution will exist for distributions in 
exponential family
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Likelihood and Log LikelihoodLikelihood and Log Likelihood
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Find a0, aS, and aT for PoissonFind a0, aS, and aT for Poisson
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Iterative Numerical Procedure to Find ai’sIterative Numerical Procedure to Find ai’s

Use statistical package or actuarial 
software

Specify link function and distribution 
type

“Iterative weighted least squares” is 
the numerical method used

Use statistical package or actuarial 
software

Specify link function and distribution 
type

“Iterative weighted least squares” is 
the numerical method used
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Solution to Our ExampleSolution to Our Example

a0 = -.288  → exp(-.288) = .75
aS = .262  → exp(.262) = 1.3
aT = .095  → exp(.095) = 1.1

μi = exp(a0) x exp(aSXS(i)) xexp( aTXT(i))

μi = .75 x  1.3XS(i) x  1.1XT(i)

i is Male,Terr 01 → μi = .75 x  1.31 x  1.10

a0 = -.288  → exp(-.288) = .75
aS = .262  → exp(.262) = 1.3
aT = .095  → exp(.095) = 1.1

μi = exp(a0) x exp(aSXS(i)) xexp( aTXT(i))

μi = .75 x  1.3XS(i) x  1.1XT(i)

i is Male,Terr 01 → μi = .75 x  1.31 x  1.10
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Testing New Drug TreatmentTesting New Drug Treatment

X1 X2 Y
Dosage Age Cure Value

1.0 30 Yes 1
1.0 43 No 0
1.0 82 No 0
1.5 45 No 0
1.5 67 No 0
1.5 26 Yes 1
2.0 33 Yes 1
2.0 50 Yes 1
2.0 72 No 0
2.5 31 Yes 1
2.5 45 Yes 1
2.5 75 Yes 1
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Multiple Linear RegressionMultiple Linear Regression

Cure Actual
Predicted 

Probability
Yes 1 0.5179
No 0 0.3298
No 0 -0.2345
No 0 0.5366
No 0 0.2183

Yes 1 0.8115
Yes 1 0.9460
Yes 1 0.7000
No 0 0.3817

Yes 1 1.2107
Yes 1 1.0081
Yes 1 0.5740

Dependent Variable:  Y
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Logistic Regression ModelLogistic Regression Model

p = probability of cure,        p  in  [0,1]

odds ratio:      p/(1-p)  in  [0, + ∞ ]

ln[p/(1-p)]    in   [ - ∞ , + ∞ ]

ln[p/(1-p)] = a  +  b1X1 + b2X2 

p = probability of cure,        p  in  [0,1]

odds ratio:      p/(1-p)  in  [0, + ∞ ]

ln[p/(1-p)]    in   [ - ∞ , + ∞ ]

ln[p/(1-p)] = a  +  b1X1 + b2X2 

Link function
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Logistic Regression ModelLogistic Regression Model

X1 X2

Dosage Age Cure Value
Predicted 

Probability
1.0 30 Yes 1 0.568
1.0 43 No 0 0.000
1.0 82 No 0 0.000
1.5 45 No 0 0.648
1.5 67 No 0 0.000
1.5 26 Yes 1 1.000
2.0 33 Yes 1 1.000
2.0 50 Yes 1 1.000
2.0 72 No 0 0.000
2.5 31 Yes 1 1.000
2.5 45 Yes 1 1.000
2.5 75 Yes 1 0.784

Dependent Variable Y
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Which Exponential Family Distribution?Which Exponential Family Distribution?

Frequency: Poisson, {Negative Binomial}

Severity:   Gamma, sometimes Inverse 
Gaussian

Real data is frequently heavier tailed that any of 
these

Loss ratio:  Compound Poisson
Pure Premium:  Compound Poisson

How many policies will renew: Binomial

Frequency: Poisson, {Negative Binomial}

Severity:   Gamma, sometimes Inverse 
Gaussian

Real data is frequently heavier tailed that any of 
these

Loss ratio:  Compound Poisson
Pure Premium:  Compound Poisson

How many policies will renew: Binomial
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What link function?What link function?

Additive model:  identity

Multiplicative model:  natural log

Modeling probability of event:  logistic

Form of nonlinear relationship (i.e., inverse 
or other)

Additive model:  identity

Multiplicative model:  natural log

Modeling probability of event:  logistic

Form of nonlinear relationship (i.e., inverse 
or other)
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Pearson ResidualPearson Residual

Residual= (Actual-
Fitted)/Var(Expected)

Variance of expected depends on 
distribution family

Residual= (Actual-
Fitted)/Var(Expected)

Variance of expected depends on 
distribution family
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Use Plot of Residual vs Fitted to Identify 
NonLinearity
Use Plot of Residual vs Fitted to Identify 
NonLinearity

fitted(fitSimPd)
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Residuals After Log TransformResiduals After Log Transform

fitted(fitSimPdln)
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Output with No TransformationOutput with No Transformation

all: glm(formula = SimPaid.ln ~ LogInitRes, family
 = gaussian, link = log, na.omit.p = T)

Deviance Residuals:
       Min      1Q    Median        3Q     Max 
 -301858.6 -242113 -161786.5 -42375.19 8449785

Coefficients:
                 Value Std. Error   t value 
(Intercept) -1180218.1  61191.817 -19.28719
 LogInitRes   149096.6   6220.791  23.96746

    Null Deviance: 8.99586e+014 on 1930 degrees 
of freedom

Residual Deviance: 6.93167e+014 on 1929 degrees 
of freedom
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Output After Log TransformOutput After Log Transform
all: glm(formula = logPaid ~ LogInitRes, family 
gaussian, na.omit.p = T)

Deviance Residuals:
       Min         1Q     Median        3Q 
 -4.272846 -0.4268939 -0.1831501 0.2630763

      Max 
3.723691

Coefficients:
                Value         Std. Error             t value 
(Intercept) 7.160387  0.07455613  96.04023
 LogInitRes 0.453788  0.0075794  59.87116

(Dispersion Parameter for Gaussian family taken 
to be 0.5334401 )

    Null Deviance: 2941.152 on 1930 degrees of f
reedom

Residual Deviance: 1029.006 on 1929 degrees of f
reedom
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Real Example of TransformationReal Example of Transformation

Previous example used simulated data
When using real data need right 
transforms for both dependent and 
independent variables
For heavy tailed data, log transform for 
dependent is common
For volatile predictor variables: often 
bin the data

Previous example used simulated data
When using real data need right 
transforms for both dependent and 
independent variables
For heavy tailed data, log transform for 
dependent is common
For volatile predictor variables: often 
bin the data
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