GLM I: Introduction to Generalized Linear Models

Richard A Derrig Ph.D. Opal Consulting Temple University Developed Originally by Gary Dean. FCAS

Modeling Number of Claims

			Number of
Policy	<u>Sex</u>	Territory	Claims in 5 Years
1	Μ	02	0
2	F	01	0
3	F	01	0
4	F	02	1
5	F	01	Ο
6	F	02	1
7	M	02	2
8	M	02	2
9	M	02	1
10	F	01	1

Number of Claims by County (Discrete Distribution)

Histogram of Paid(Insurer) from Texas Data

Problems with Regresssion Model

- Number of claims is discrete
- Claim sizes are skewed to the right
- Probability of an event is in [0,1]
- Variance is not constant across data points *i*
- Nonlinear relationship between X's and Y's

Generalized Linear Models - GLMs

- Fewer restrictions
- Y can model number of claims, probability of renewing, loss severity, loss ratio, etc.
- Large and small policies can be put into one model
- Y can be nonlinear function of X's
 Only some nonlinear relationships can be modeled
- Classical linear regression model is a special case

Classical Multiple Linear Regression

$$Y_i = a_0 + a_1 X_{i1} + a_2 X_{i2} \dots + a_m X_{im} + e_i$$

Y_i are the response variables
X_{ij} are predictors

i subscript denotes ith observation

j subscript identifies jth predictor

One Predictor: $Y_i = a_0 + a_1 X_i$

Classical Multiple Linear Regression

$$\Rightarrow \mu_i = \mathbb{E}[Y_i] = a_0 + a_1 X_{i1} + \dots + a_m X_{im}$$

* Y_i is Normally distributed random variable with constant variance σ^2

* Want to estimate $\mu_i = E[Y_i]$ for each *i*

Response Yi has Normal Distribution

Generalized Linear Models - GLMs

Same goal as Linear Model

Predict : $\mu_i = E[Y_i]$

Generalized Linear Models - GLMs

$\Rightarrow g(\mu_i) = a_0 + a_1 X_{i1} + ... + a_m X_{im}$

- g() is a function of the dependent variable
 Referred to as the link function
 A transformation such as log
- $\begin{array}{l} & \quad & \quad & \quad \\ & \quad & \quad \\ & \quad$
- Y, can be Normal, Poisson, Gamma, Binomial, Compound Poisson, ...
- Variance can be modeled

GLMs Extend Classical Linear Regression

→ If link function is identity: $g(\mu_i) = \mu_i$

And Y_i has Normal distribution

→ GLM gives same answer as Classical Linear Regression*

* Least squares and MLE equivalent for Normal dist.

Exponential Family of Distributions – Canonical Form

$$f(y;\theta,\phi) = \exp\left[\frac{\left\{\theta \cdot y - b(\theta)\right\}}{a(\phi)} + c(y,\phi)\right]$$

 $E[Y] = b'(\theta)$ Var [Y] = b''(\theta)a(\phi)

 θ is the parameter of interest ! ϕ is often called a nuisance parameter.

Some Math Rules: Refresher

(1)
$$\exp(x) = e^{x}$$

(2) $x = \exp[\ln x] = \ln[\exp x]$
(3) $\ln(xy) = \ln x + \ln y$
(4) $\ln(x^{r}) = r \ln x$
(5) $\ln(1/x) = \ln(x^{-1}) = -\ln x$
(6) $\ln(x/y) = \ln x - \ln y$

Normal Distribution in Exponential Family

$$f(y;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$

$$= \exp\left(\ln\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)\right) \exp\left(-\frac{y^2 - 2\mu y + \mu^2}{2\sigma^2}\right)$$

$$= \exp\left(\frac{\mu y - \mu^2/2}{\sigma^2} - \frac{y^2}{2\sigma^2} - \ln\sqrt{2\pi\sigma^2}\right)$$

7

Normal Distribution in Exponential Family

$$\theta \qquad b(\theta)$$

$$f(y;\mu,\sigma^2) = \exp\left(\frac{\mu y - \mu^2/2}{\sigma^2} - \frac{y^2}{2\sigma^2} - \ln\sqrt{2\pi\sigma^2}\right)$$
Let $\theta = \mu$ and $a(\phi) = \sigma^2$,
then $b(\theta) = \theta^2/2 \rightarrow b'(\theta) = \theta = \mu$
and $Var[Y] = b''(\theta)a(\phi) = 1 \cdot \sigma^2 = \sigma^2$

Poisson Distribution in Exponential Family

$$\Pr[Y = y] = \frac{\mu^{y} e^{-\mu}}{y!}$$

$$\Pr[Y = y] = \exp\left\{\ln\left(\frac{\mu^{y} e^{-\mu}}{y!}\right)\right\}$$

$$\Pr[Y = y] = \exp\left\{\frac{\ln(\mu) \cdot y - \mu}{1} - \ln(y!)\right\}$$

19

Poisson Distribution in Exponential Family

$$\theta = \ln \mu \rightarrow \mu = e^{\theta}$$

 $b(\theta) = \mu = e^{\theta}$ and $a(\phi) =$

$$E[Y] = b'(\theta) = \frac{d}{d\theta}e^{\theta} = e^{\theta} = \mu$$

Var [Y] = b''(\theta)a(\phi) = $\frac{d^2}{d\theta^2}e^{\theta} = \mu$

Compound Poisson Distribution

$$\Rightarrow Y = C_1 + C_2 + \ldots + C_N$$

N is Poisson random variable
 C_i are i.i.d. with Gamma distribution

- This is an example of a Tweedie distribution
- Y is member of Exponential Family

Members of the Exponential Family

- Normal
- Poisson
- Binomial
- Gamma
- Inverse Gaussian
- Compound Poisson (Tweedie)

Variance Structure

 $\Rightarrow E[Y_i] = \mu_i = b'(\theta_i) \rightarrow \theta_i = b'(-1)(\mu_i)$ \Rightarrow Var $[Y_i] = a(\Phi_i) b''(\theta_i) = a(\Phi_i) V(\mu_i)$ * Common form: $Var[Y_i] = \Phi V(\mu_i)/W_i$

Variance Functions $V(\mu)$

<u>V(µ)</u>

Normal	μ^{0}
Poisson	μ
Binomial	μ (1 - μ)
Tweedie	μ ^p , 1 <p<2< td=""></p<2<>
Gamma	μ^2
Inverse Gaussian	μ^3

* Recall: $Var[Y_i] = \Phi V(\mu_i)/w_i$

Variance at Point and Fit

A Practioner's Guide to Generalized Linear Models: A CAS Study Note

Normal vs Gamma (Inverse Link)

Primary Paid = f(Initial ndemnity Reserve)

Variance of Y_i and Fit at Data Point *i*

 \Rightarrow Var(Y_i) is big \rightarrow looser fit at data point *i*

 $\stackrel{\hspace{0.1em} \diamond}{\hspace{0.1em}} \operatorname{Var}(Y_i) \text{ is small} \to \operatorname{tighter fit} \operatorname{at} \operatorname{data} \\ \operatorname{point} i$

Tightness of fit $\propto \frac{1}{Var(Y_i)}$

Why Exponential Family?

Distributions in Exponential Family can model a variety of problems

Standard algorithm for finding coefficients a₀, a₁, ..., a_m

Modeling Number of Claims

			Number of
Policy	<u>Sex</u>	Territory	Claims in 5 Years
1	Μ	02	0
2	F	01	0
3	F	01	0
4	F	02	1
5	F	01	0
6	F	02	1
7	М	02	2
8	М	02	2
9	М	02	1
10	F	01	1

Assume a Multiplicative Model

* µ_i = expected number of claims in five years

$$\Rightarrow \mu_i = B_{F,01} \times C_{Sex(i)} \times C_{Terr(i)}$$

✤ If *i* is Female and Terr 01 $→ \mu_i = B_{F,01} \times 1.00 \times 1.00$

Nultiplicative Model

$$\Rightarrow \mu_i = \exp(a_0 + a_S X_{S(i)} + a_T X_{T(i)})$$

 $\Rightarrow \mu_i = \exp(a_0) \times \exp(a_S X_{S(i)}) \times \exp(a_T X_{T(i)})$

i is Female → X_{S(i)} = 0; Male → X_{S(i)} = 1 *i* is Terr 01 → X_{T(i)} = 0; Terr 02 → X_{T(i)} = 1

Values of Predictor Variables

Policy	<u>Sex</u>	X _{s(1)}	Territory	X T(<i>i</i>)
1	М	1	02	1
2	F	0	01	0
3	F	0	01	0
4	F	0	02	1
5	F	0	01	0
6	F	0	02	1
7	М	1	02	1
8	М	1	02	1
9	М	1	02	1
10	F	0	01	0

Natural Log Link Function

 $\Rightarrow \ln(\mu_i) = a_0 + a_S X_{S(i)} + a_T X_{T(i)}$

$\Rightarrow \mu_i$ is in (0, ∞)

$\Rightarrow \ln(\mu_i)$ is in $(-\infty, \infty)$

Poisson Distribution in Exponential Family

$$\Pr[Y = y] = \exp\left\{\frac{\ln \mu \cdot y - \mu}{1} - \ln(y!)\right\}$$
$$\theta = \ln \mu$$
$$b(\theta) = e^{\theta}$$

Natural Log is Canonical Link for Poisson

 $\leftrightarrow \theta_i = \ln(\mu_i)$

 $\Rightarrow \theta_i = a_0 + a_S X_{S(i)} + a_T X_{T(i)}$

Estimating Coefficients a1, a2, ..., am

Classical linear regression uses least squares

GLMs use Maximum Likelihood Method

Solution will exist for distributions in exponential family

Likelihood and Log Likelihood

$$L(y_{1},..;\theta_{1},..) = \prod_{i=1}^{n} f(y_{i};\theta_{i})$$
$$\lambda(y_{1},..;\theta_{1},..) = \ln[L(y_{1},..;\theta_{1},..)]$$
$$\lambda(y_{1},..;\theta_{1},..) = \sum_{i=1}^{n} \ln f(y_{i};\theta_{i})$$

37

Find a₀, a_s, and a_r for Poisson

Maximize: $\lambda(y_1,...;\theta_1,...) = \sum \theta_i y_i - e^{\theta_i} - \ln y_i!$ i=1with $\theta_i = a_0 + a_S x_{S(i)} + a_T x_{T(i)}$ Iterative Numerical Procedure to Find a's

Use statistical package or actuarial software

Specify link function and distribution type

Iterative weighted least squares" is the numerical method used

Solution to Our Example

Testing New Drug Treatment

X 1	X 2		Y
<u>Dosage</u>	<u>Age</u>	<u>Cure</u>	<u>Value</u>
1.0	30	Yes	1
1.0	43	No	0
1.0	82	No	0
1.5	45	No	0
1.5	67	No	0
1.5	26	Yes	1
2.0	33	Yes	1
2.0	50	Yes	1
2.0	72	No	0
2.5	31	Yes	1
2.5	45	Yes	1
2.5	75	Yes	1

Multiple Linear Regression

	Dependent Variable: Y		
	Predicted		
<u>Cure</u>	<u>Actual</u>	<u>Probability</u>	
Yes	1	0.5179	
No	0	0.3298	
No	0	-0.2345	
No	0	0.5366	
No	0	0.2183	
Yes	1	0.8115	
Yes	1	0.9460	
Yes	1	0.7000	
No	0	0.3817	
Yes	1	1.2107	
Yes	1	1.0081	
Yes	1	0.5740	

Logistic Regression Model

- p = probability of cure, p in [0,1]
- In[p/(1-p)] in [-∞, +∞]
- $\Rightarrow \ln[p/(1-p)] = a + b_1X_1 + b_2X_2$

Link function

Logistic Regression Model

X 1	X 2		Dependent	Variable Y
				Predicted
<u>Dosage</u>	<u>Age</u>	<u>Cure</u>	<u>Value</u>	Probability
1.0	30	Yes	1	0.568
1.0	43	No	0	0.000
1.0	82	No	0	0.000
1.5	45	No	0	0.648
1.5	67	No	0	0.000
1.5	26	Yes	1	1.000
2.0	33	Yes	1	1.000
2.0	50	Yes	1	1.000
2.0	72	No	0	0.000
2.5	31	Yes	1	1.000
2.5	45	Yes	1	1.000
2.5	75	Yes	1	0.784

Which Exponential Family Distribution?

Frequency: Poisson, {Negative Binomial}

- Severity: Gamma, sometimes Inverse Gaussian
 - Real data is frequently heavier tailed that any of these
- Loss ratio: Compound Poisson
 Pure Premium: Compound Poisson
- How many policies will renew: Binomial

What link function?

Additive model: identity

Multiplicative model: natural log

Modeling probability of event: logistic

Form of nonlinear relationship (i.e., inverse or other)

Pearson Residual

Residual= (Actual-Fitted)/Var(Expected)

Variance of expected depends on distribution family

Use Plot of Residual vs Fitted to Identify NonLinearity

48

Residuals After Log Transform

49

Output with No Transformation

all: glm(formula = SimPaid.In ~ LogInitRes, family = gaussian, link = log, na.omit.p = T)

Deviance Residuals:

Min 1Q Median 3Q Max -301858.6 -242113 -161786.5 -42375.19 8449785

Coefficients:

Value Std. Error t value (Intercept) -1180218.1 61191.817 -19.28719 LogInitRes 149096.6 6220.791 23.96746

Null Deviance: 8.99586e+014 on 1930 degrees of freedom

Residual Deviance: 6.93167e+014 on 1929 degrees of freedom

Output After Log Transform

```
all: glm(formula = logPaid ~ LogInitRes, family gaussian, na.omit.p = T)
```

Deviance Residuals:

Min 1Q Median 3Q -4.272846 -0.4268939 -0.1831501 0.2630763

Max 3.723691

Coefficients:

	Value	Std. Error	t value
(Intercept	t) 7.160387	0.07455613	96.04023
LogInitR	es 0.453788	3 0.0075794	59.87116
(Dispersition to be 0.53	on Paramete 334401)	er for Gaussia	an family taken
Null De reedom	eviance: 294	11.152 on 193	30 degrees of f
Residual reedom	Deviance: 1	029.006 on 1	929 degrees of f

Real Example of Transformation

- Previous example used simulated data
- When using real data need right transforms for both dependent and independent variables
- For heavy tailed data, log transform for dependent is common
- For volatile predictor variables: often bin the data

