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Objectives

Gentle introduction to Linear
Models

lllustrate some simple applications
of linear models

Address some practical modeling
ISsues

Show features common to LMs
and GLMs



Predictive Modeling Family

[Pdt Mdlg}

Data Mining

N7



Linear Models Are Basic Statistical
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Linear Model for Means: A Step
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Linear Models Based on Means

Payment by Age Group and Attorney Involvement
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An Introduction to Linear Regression




Intro to Regression Cont.

Fits line that minimizes squared deviation between actual and
fitted values
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Some Work Related Liability Data

Closed Claims from Tx Dept of Insurance

Total Award
Initial Indemnity reserve
Policy Limit
Attorney Involvement
Lags
Closing
Report
Injury
Sprain, back injury, death, etc
Data, along with some of analysis will be posted on internet

X



Simple Hlustration

Total Settlement vs. Initial Indemnity Reserve
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How Strong Is Linear Relationship?:
Correlation Coefficient

Varies between -1 and 1
Zero = no linear correlation

IninitialindemnityRes  InTotalAward InlnitialExpense InReportlag

InInitialindemnityRes 1.000
InTotalAward 0.303 1.000
IninitialExpense 0.118 0.227 1.000

InReportlag -0.112 0.048 0.090 1.000




Scatterplot Matrix

Matrix Plot
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Prepared with Excel add-in XLMiner




Linear Modeling Tools Widely
Avallable: Excel Analysis Toolpak
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How Good 1s the fit?

SUMMARY QUTPUT
Regression Stafistics
Multiple R 0.303
R Square 0.092
Adjusted R Square 0.081
Standard Error 1.208
Obsenations 1818
ANOVA
df 8e MS F Significance F
Regression 1 2688.28 266.28 183.07 0.00
Residual 1816 2641.50 1.45
Total 1817 2807.79

X



First Step: Compute residual

Residual = actual — fitted

Y=InTotal
Award Predicted Residual
10.13 11.76 -1.63
14.08 12.47 1.61
10.31 11.65 -1.34

Sum the square of the residuals (SSE)

Compute total variance of data with no
model (SST)



Goodness of Fit Statistics

R?: (SSE Regression/SS Total)
percentage of variance explained
Adjusted R?

R? adjusted for number of coefficients in
model

Note SSE = Sum squared errors
MS is Mean Square Error



R2 Statistic

SUMMARY OQUTPUT

Regression Statistics

Multiple R 0.3757
R Square 0.1412
Adjusted R Square 0.1388
Standard Error 1.1740
Observations 1818



Significance of Regression

F statistic:

(Mean square error of Regression/Mean
Square Error of Residual)

Df of numerator = k = number of predictor vars
Df denominator = N - k



ANOVA (Analysis of Variance) Table

Standard way to evaluate fit of model

Breaks Sum Squared Error into model and
residual components

ANOVA

df SS MS F Significance F
Regressicn & 4105 82.1 89.6 0.00
Residual 1812 24873 1.4
Total 1817  2907.8




Goodness of Fit Statistics

T statistics: Uses SE of coefficient to
determine If it Is significant

SE of coefficient is a function of s (standard
error of regression)

Uses T-distribution for test

It Is customary to drop variable if coefficient
not significant

X



T-Statistic: Are the Intercept and
Coefficient Significant?

Standard
Coefficients Error t Stat P-value
Intercept 10.343 0.112 92.122 0
Ininitialindemnity
Res 0.154 0.011 13.530 8.21E-40




Other Diagnostics: Residual Plot
Independent Variable vs. Residual

Points should scatter randomly around zero
If not, regression assumptions are violated

IninitialindemnityRes Residual Plot
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Predicted vs. Residual

Residuals
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Random Residual

Random Residuals vs Predicted
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What May Residuals Indicate?

If absolute size of residuals increases as
predicted increases, may indicate non-
constant variance

may Iindicate need to log dependent variable
May need to use weighted regression

May indicate a nonlinear relationship



Standardized Residual: Find Outliers
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Outliers

May represent error

May be legitimate but have undue influence
on regression

Can downweight oultliers

Weight inversely proportional to variance of
observation
Robust Regression

Based on absolute deviations

Based on lower weights for more extreme
observations

X



Non-Linear Relationship

Plot of Residuals

Residual

Predicted Y




Non-Linear Relationships

Suppose Relationship between dependent and
Independent variable is non-linear?

Linear regression requires a linear relationship

Simulated Severity vs Report Lag
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Transformation of Variables

Apply a transformation to either the

dependent variable, the independent variable
or both

Examples:
Y’ =log(Y)
X = log(X)
X' =1/X
Y’:Y1/2



Transformation of VVariables:
Skewness of Distribution

Llse prlnm’rnry Data Analyqiq to_detect qknwnncq and hpa\/y tails
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After Log Transformation

-Data much less skewed, more like Normal, though still skewed

Box Plot
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Transformation of VVariables

Suppose the Claim Severity is a function of the
log of report lag

Compute X’ = log(Report Lag)
Regress Severity on X’

Coefficients Standard Error ¢ Stal

intercept 1003.58 501  200.43
Log Report Lag 12049.13 7801 154.46

X



Categorical Independent Variables:
The Other Linear Model: ANOVA

Average of Totalsettlementamountorcourtaward

Injury Total
Amputation 567,889
Backinjury 168,747
Braindamage 863,485
Burnschemical 1,097,402
Burnsheat 801,748
Circulatorycondition 302,500

Table above created with Excel Pivot Tables



Model

Model is Model Y = a,, where i is a category of
the independent variable. a; is the mean of
category I.

Aver age Severity By Injury

Aver ageof Trended Sever ity
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B Total |4,215.78 |2,185.64 | 2,608.14 | 1,248.90 | 534.23 |14,197.4 | 6,849.98 | 3,960.45 | 7,493.70




Two Categories

Model Y = a, where i Is a category
of the independent variable and a,
IS ItS mean

In traditional statistics we compare
a, to a,



If Only Two Categories: T-Test for test of
Significance of Independent Variable

Variable 1 Variable 2

Mean 124,002 440,758
Variance 2.35142E+11 1.86746E+12
Observations 354 1448
Hypothesized Mee 0

df 1591

t Stat -7.1

P(T<=t) one-tall 0.00

t Critical one-tall 1.65

P(T<=t) two-talil 0.00

t Critical two-tail 1.96

N\

Use T-Test from Excel Data Analysis Toolpak



More Than Two Categories

Use F-Test instead of T-Test

With More than 2 categories, we refer to it as
an Analysis of Variance (ANOVA)



Fitting ANOVA With Two Categories
Using A Regression

Create A Dummy Variable for Attorney
Involvement

Variable is 1 If Attorney Involved, and O
Otherwise

Attorneyinvolvement-insurer Attorney TotalSettlement
1 25000
1300000
30000
42500
25000
30000
36963
145000
875000

z|<|<|z|<|z]|<]|<]|=<
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More Than 2 Categories

If there are K Categories-

Create k-1 Dummy Variables

Dummy; = 1 if claim is in category I, and is O
otherwise

The k" Variable is 0 for all the Dummies
Its value Is the intercept of the regression



Design Matrix

Severity Injury  Dummy 1 Dummy2 Dummy3 Dummy4 DummyS5 Dummy6 Dummy7 Dummy 8
- BRUISE 0 1 0 0 0 0 0

271153 OTHER 0 ] 0 ] )] 0 0 0
751.11 STRAIN 0 ] 1 ] 0 0 0 0
762,08 FRACTURE 0 i 0 0 1 0 0 0
796.75 CUT/PUNCT 1 i 0 0 0 0 0 0
382.20 BRUISE 0 1 0 0 0 0 0 0
171.35 EYE 0 0 0 0 i} 0 1 ]

Injury Code Injury_Bac.:kin Injury_.l\/.lult.ipl Injury_Ner\{ou Injury_Other

jury einjuries scondition

1 0 0 0 0

1 0 0 0 0

12 1 0 0 0

11 0 1 0 0

17 0 0 0 1

Top table Dummy variables were hand coded, Bottom
table dummy variables created by XLMiner. f



Regression Output for Categorical

SUMMARY QUTPUT
Slalislics
ultiple R 0.18
R Square 0.03
Acdustad R Squer 0.02
Standard Emor 19,621 .92
Obsarvaions 4 112,00
ANOVA,
af 8 MS F Significence F

Regresdon 8 4. 38E+10 5.45E+08 4 0
Feddua 4103 1.58E+12 3.85E+08
Tota 4111 1 B2E+12

Coefficianies  Slenderd Ertor f Stat Pyahie  Lower95% LUpper 05
Inbercept 841036 254 05 6.72 0.00 454040 8,281.32
Dummy 1 (5,130.73) 113092 {4.54) 0.00 (7,.347.90) (2,913.48)
Dummy 2 (2,153.48) 1.147.89 {1.58) 0.08 {4.403.98) 97.00
Dummy 3 1,440.73 1.14845 098 0.32 {1.11068) 3,392.31
Dummy 4 (2,332.76) 158384 {1.38) 0.17 (5,624.00) 088 .48
Dummy 5 8.148.78 1.716.79 4.75 0.00 4762684 1151481
Dummy & (4, 205.91) 1556.30 {2.54) 0.01 (F45334) (958.48)
Dummy 7 {5.871.3% 2290M {2 55) 0 (1037863 (1.384.05)
Cummy § (5,5328%) 251655 (2 20) 003 (1048585 (S09.04)

¥



A More Complex Model Multiple
Regression

Let Y =a+ by*X; + b,*X, +
..b*X +e

The X's can be numeric variables
or categorical dummies



Multiple Regression
Y =a + bl* Initial Reserve+ b2* Report Lag + b3*PolLimit
+ b4*age+ c;Attorney;+d, Injury ,+e

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.49844
R Square 0.24844
Adjusted R Square 0.24213
Standard Error 1.10306
Observations 1802
ANOVA
df S MS F
Regression 15 718.36 47.89 39.360
Residual 1786 2173.09 1.22
Total 1801 2891.45
Coefficients Standard Error t Stat P-value
Intercept 10.052 0.156 64.374 0.000
InInitialindemnityRes 0.105 0.011 9.588 0.000
InReportlag 0.020 0.011 1.887 0.059
Policy Limit 0.000 0.000 4.405 0.000
Cimt Age -0.002 0.002 -1.037 0.300
Attorney 0.718 0.068 10.599 0.000
Injury_Backinjury -0.150 0.075 -1.995 0.046
Injury_Braindamage 0.834 0.224 3.719 0.000
Injury_Burnschemical 0.587 0.247 2.375 0.018
Injury_Burnsheat 0.637 0.175 3.645 0.000
Injury_Circulatorycondition 0.935 0.782 1.196 0.232




More Than One Categorical Variable

For each categorical variable
Create k-1 Dummy variables
K Is the total number of variables

The category left out becomes the “base”
category

It’s value Is contained In the intercept
ModelisY =a; +Db; + ...+ eor

Y =u+a + b+ ...+ e, where a + b,
are offsets to u
e Is random error term

X



Correlation of Predictor VVariables:
Multicollinearity

Ins Index  CPI Employment PchangeEmpg UEF Rate § Chg UEF Fesidual Resi
11.7 136.2 117,718 LU0 "IN O
12.7 140.3 118,452 RELLCEEL)

13.6 144 5 120,259 | Input

138 1483 123,060 | InputRange: e o
14 .3 152 4 124 800 Grouped By: & Columns Cancel
14 .5 156.9 126,708  Rows Help
151 1606 128,558 v Labels in First row

1.7 163.0 131,463

16.1 166 6 133,485 | | ©Utput options

17.3 172.2 135:591 * Qutput Range: | Y

18.9 1771 136,933 f* Mew ‘Workshest Ply: |

207 17949 136 485 {7 Mew Warkbook,

236 184.0 137,736




Multicollinearity

Predictor variables are assumed
uncorrelated

Assess with correlation matrix
Ins Index CA Employmenl PchangsEmp UEP Rele  Cng UEP

s |ndex 1.000

CA 0.842 1.000

Emplayment 0878 0.984 1.000

PchangeEmp 10.125) 0.018 0.082 1.000

UEP Rate {0.244) {0.622) {0.742) {0.419) 1.000

Cng UEP 0.24 0.143 0.077 {0.826) .31 1.000

X



Remedies for Multicollinearity

Drop one or more of the highly correlated
variables

Use Factor analysis or Principle components
to produce a new variable which is a
weighted average of the correlated variables

Use stepwise regression to select variables
to include

X



Similarities with GLMs

Linear Models GLMs
Transformation of Link functions
Variables
Use dummy coding for Use dummy coding for
categorical variables categorical variables
Residual Deviance
Test significance of Test significance of
coefficients coefficients

X



Introductory Modeling Library
Recommendations

Berry, W., Understanding Regression Assumptions,
Sage University Press

lversen, R. and Norpoth, H., Analysis of Variance,
Sage University Press

Fox, J., Regression Diagnostics, Sage University
Press

Data Mining for Business Intelligence, Concepts,
Applications and Techniques in Microsoft Office
Excel with XLMiner,Shmueli, Patel and Bruce, Wiley
2007

De Jong and Heller, Generalized Linear Models for
Insurance Data, Cambridge, 2008



