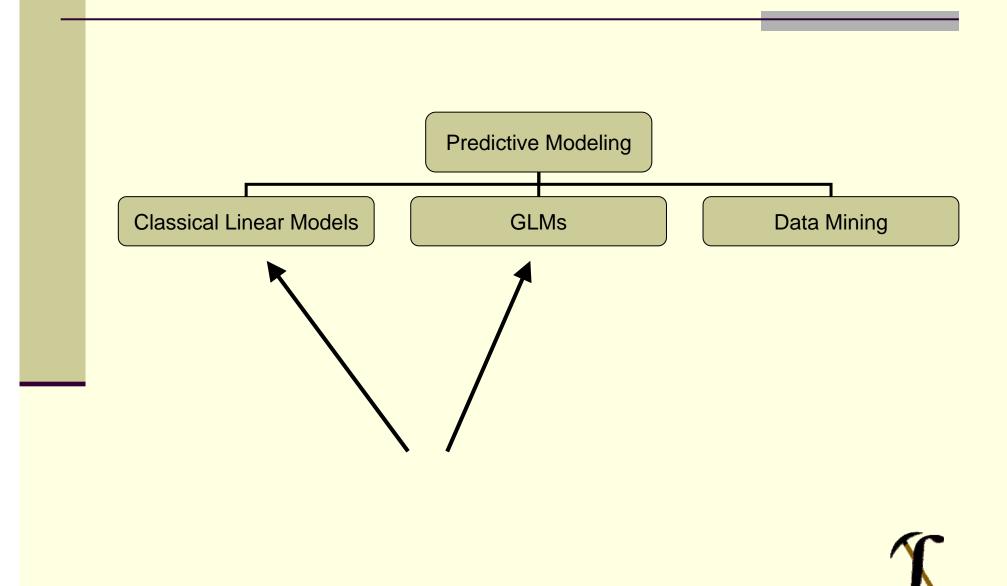
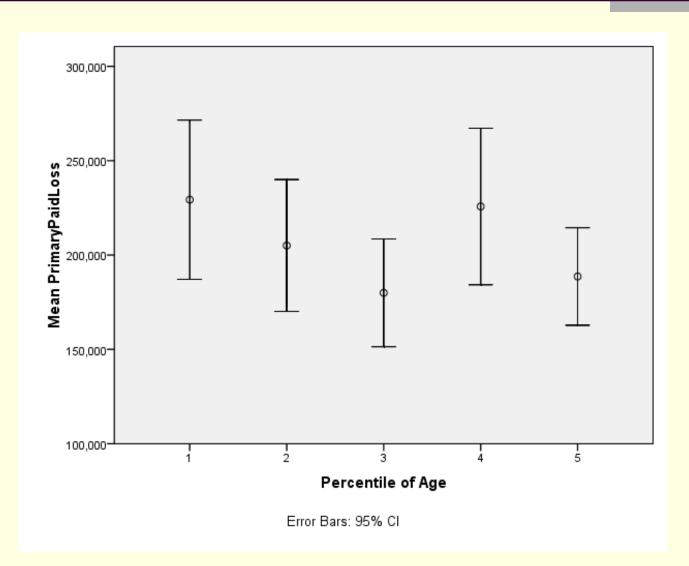
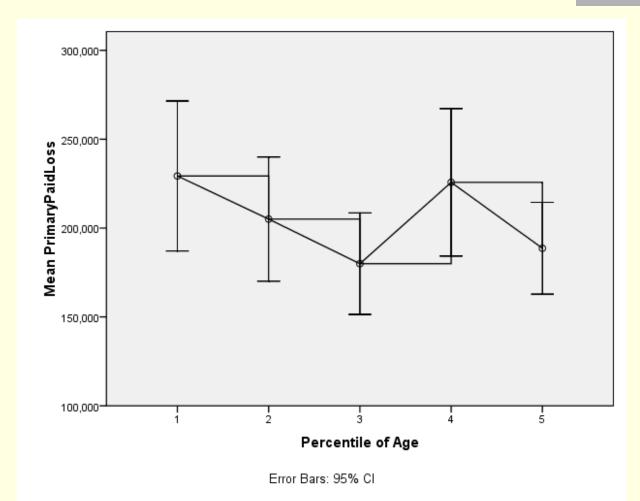
Introduction to Generalized Linear Models

2007 CAS Predictive Modeling Seminar Prepared by Louise Francis Francis Analytics and Actuarial Data Mining, Inc. <u>www.data-mines.com</u> Louise_francis@msn.com October 11, 2007

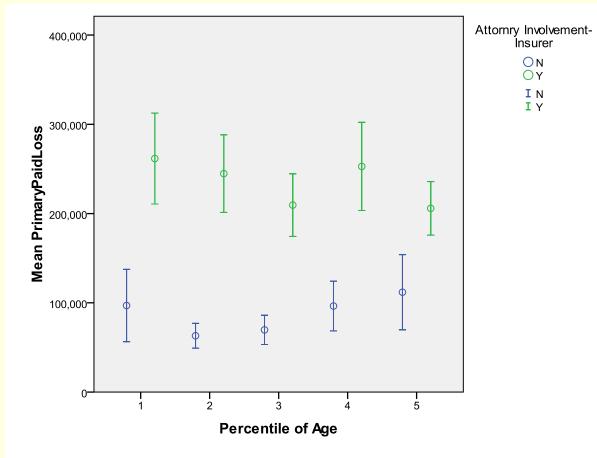

Objectives

Gentle introduction to Linear Models


- Illustrate some simple applications of linear models
- Address some practical modeling issues
- Show features common to LMs and GLMs


Predictive Modeling Family

Linear Models Are Basic Statistical Building Blocks: Ex:Mean Payment by Age Group


Linear Model for Means: A Step Function Ex:Mean Payment by Age Group

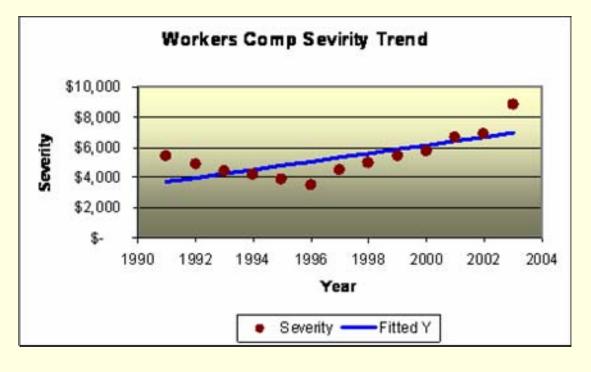
X


Linear Models Based on Means

Payment by Age Group and Attorney Involvement

Error Bars: 95% CI

An Introduction to Linear Regression



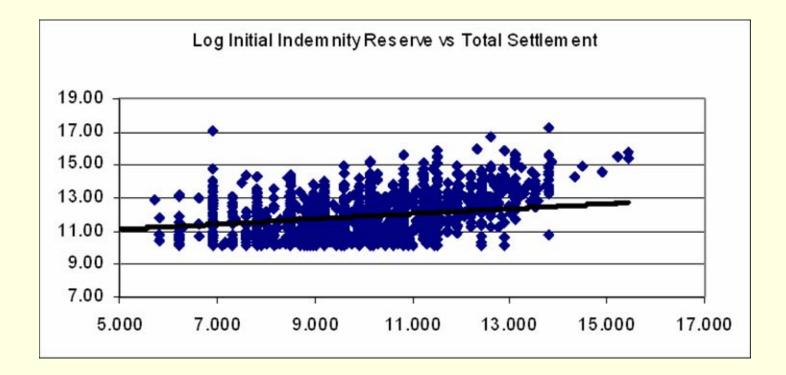
L

Intro to Regression Cont.

Fits line that minimizes squared deviation between actual and fitted values

$$\min\left(\sum (Y_i - Y)^2\right)$$

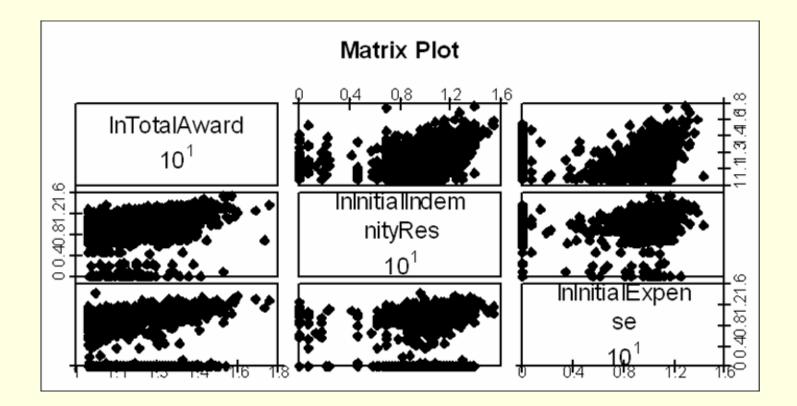
Some Work Related Liability Data


Closed Claims from Tx Dept of Insurance

- Total Award
- Initial Indemnity reserve
- Policy Limit
- Attorney Involvement
- Lags
 - Closing
 - Report
- Injury
 - Sprain, back injury, death, etc
- Data, along with some of analysis will be posted on internet

Simple Illustration

Total Settlement vs. Initial Indemnity Reserve



How Strong Is Linear Relationship?: Correlation Coefficient

- Varies between -1 and 1
- Zero = no linear correlation

	InInitialIndemnityRes	InTotalAward	InInitialExpense	InReportlag
InInitialIndemnityRes	1.000			
InTotalAward	0.303	1.000		
InInitialExpense	0.118	0.227	1.000	
InReportlag	-0.112	0.048	0.090	1.000

Scatterplot Matrix

Prepared with Excel add-in XLMiner

Linear Modeling Tools Widely Available: Excel Analysis Toolpak

- Install Data
 Analysis Tool
 Pak (Add In) that
 comes wit Excel
- Click Tools, Data Analysis, Regression

Regression		? 🔀
Input Input <u>Y</u> Range: Input <u>X</u> Range: Labels Confidence Level:	\$H\$11:\$H\$23 3 \$J\$11:\$J\$23 3 Constant is Zero %	OK Cancel <u>H</u> elp
Output options © Output Range: © New Worksheet Ply: © New Workbook Residuals	\$5\$4	
Image: Residuals Image: Residuals Image: Standardized Residuals Normal Probability Image: Normal Probability Image: Normal Probability Image: Normal Probability	 ✓ Resi<u>d</u>ual Plots ✓ Line Fit Plots 	

How Good is the fit?

SUMMARY OUTPUT					
Regression Stati	stics				
Multiple R	0.303				
R Square	0.092				
Adjusted R Square	0.091				
Standard Error	1.206				
Observations	1818				
ANOVA					
	ďf	SS	MS	F	Significance F
Regression	1	266.29	266.29	183.07	0.00
Residual	1816	2641.50	1.45		
Total	1817	2907.79			

First Step: Compute residual

Residual = actual – fitted

Y=InTotal		
Award	Predicted	Residual
10.13	11.76	-1.63
14.08	12.47	1.61
10.31	11.65	-1.34

- Sum the square of the residuals (SSE)
- Compute total variance of data with no model (SST)

Goodness of Fit Statistics

- R²: (SSE Regression/SS Total)
 - percentage of variance explained
- Adjusted R²
 - R² adjusted for number of coefficients in model
 - Note SSE = Sum squared errors
 - MS is Mean Square Error

R² Statistic

SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.3757
R Square	0.1412
Adjusted R Square	0.1388
Standard Error	1.1740
Observations	1818

Significance of Regression

- F statistic:
 - (Mean square error of Regression/Mean Square Error of Residual)
 - Df of numerator = k = number of predictor vars
 - Df denominator = N k

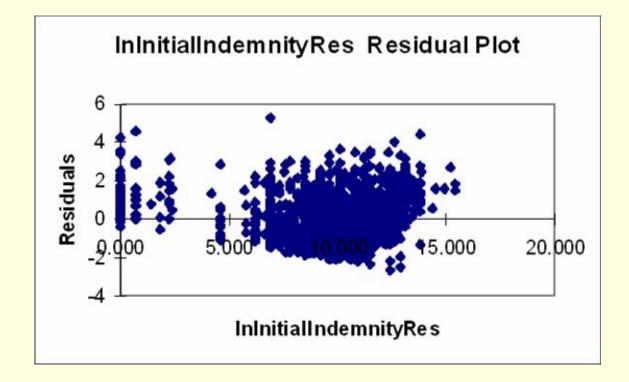
ANOVA (Analysis of Variance) Table

- Standard way to evaluate fit of model
- Breaks Sum Squared Error into model and residual components

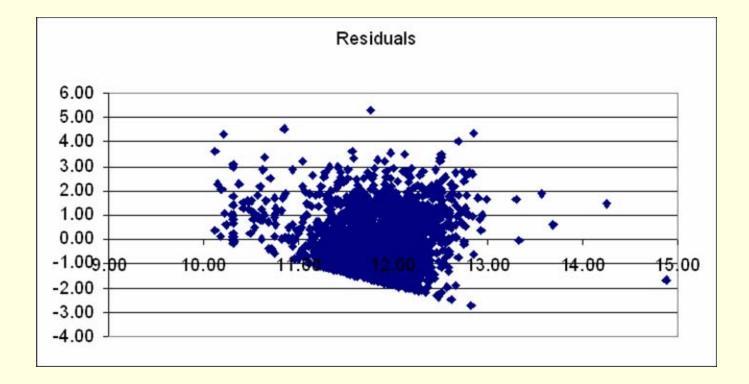
ANOVA

	df	SS	MS	F	Significance F
Regression	5	410.5	82.1	59.6	0.00
Residual	1812	2497.3	1.4		
Total	1817	2907.8			

Goodness of Fit Statistics

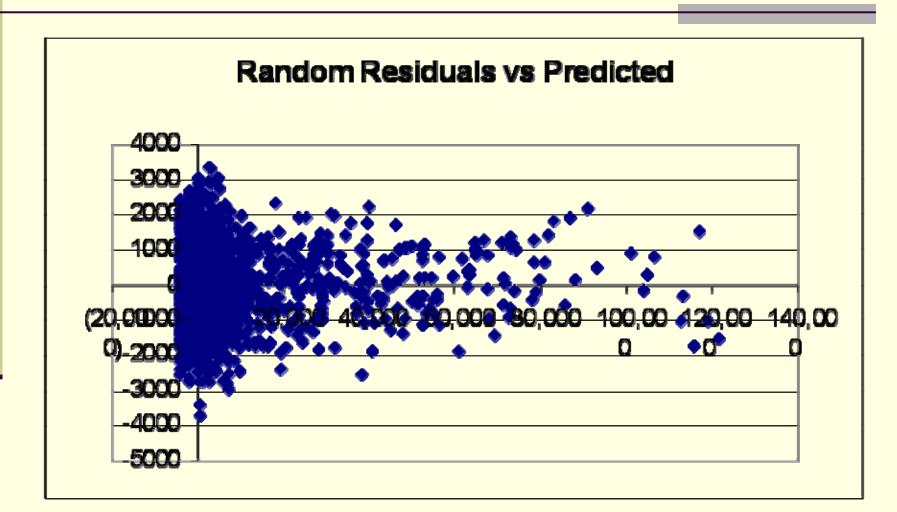

- T statistics: Uses SE of coefficient to determine if it is significant
 - SE of coefficient is a function of s (standard error of regression)
 - Uses T-distribution for test
 - It is customary to drop variable if coefficient not significant

T-Statistic: Are the Intercept and Coefficient Significant?


	Standard									
	Coefficients	Error	t Stat	P-value						
Intercept InInitialIndemnity	10.343	0.112	92.122	0						
Res	0.154	0.011	13.530	8.21E-40						

Other Diagnostics: Residual Plot Independent Variable vs. Residual

- Points should scatter randomly around zero
- If not, regression assumptions are violated



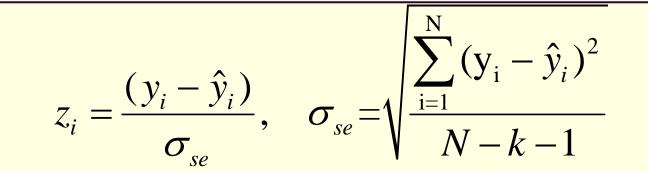
Predicted vs. Residual

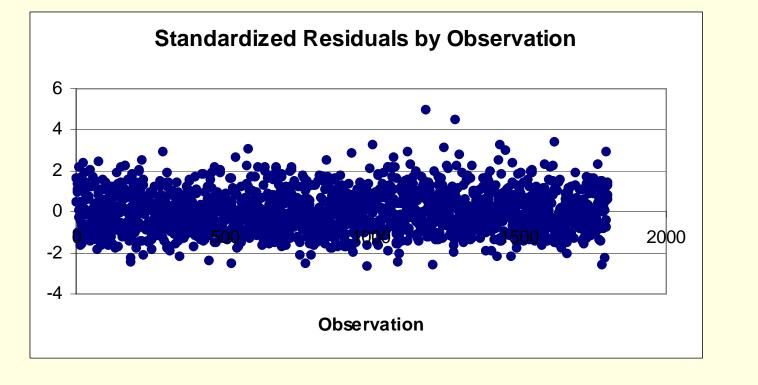
L

Random Residual

DATA WITH NORMALLY DISTRIBUTED ERRORS RANDOMLY GENERATED

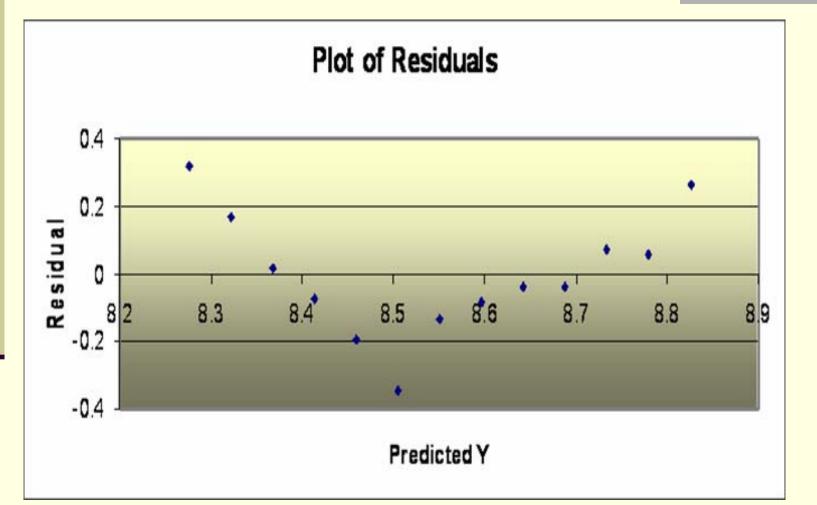
J


What May Residuals Indicate?


If absolute size of residuals increases as predicted increases, may indicate nonconstant variance

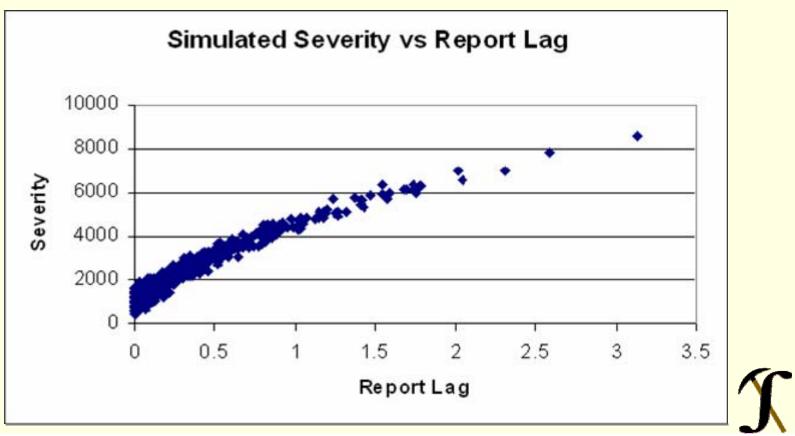
- may indicate need to log dependent variable
- May need to use weighted regression
- May indicate a nonlinear relationship

Standardized Residual: Find Outliers



Outliers

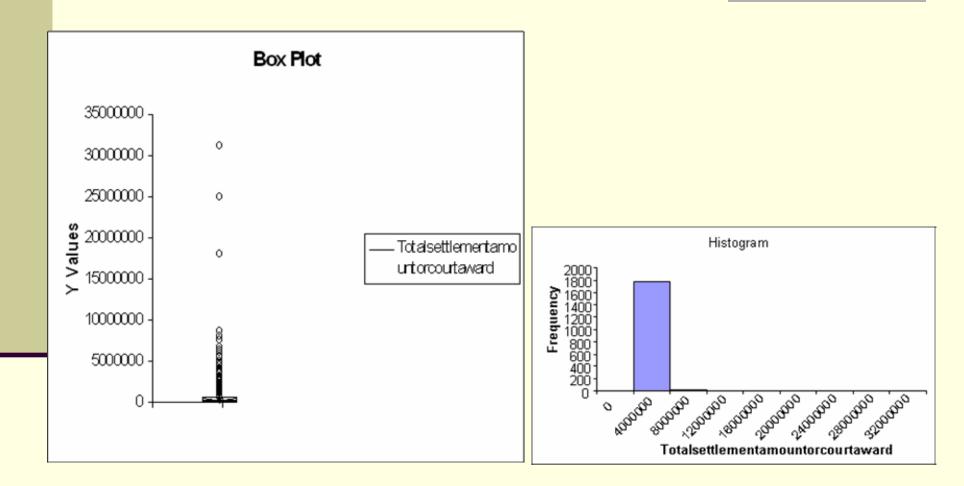
- May represent error
- May be legitimate but have undue influence on regression
- Can downweight oultliers
 - Weight inversely proportional to variance of observation
 - Robust Regression
 - Based on absolute deviations
 - Based on lower weights for more extreme observations


Non-Linear Relationship

L

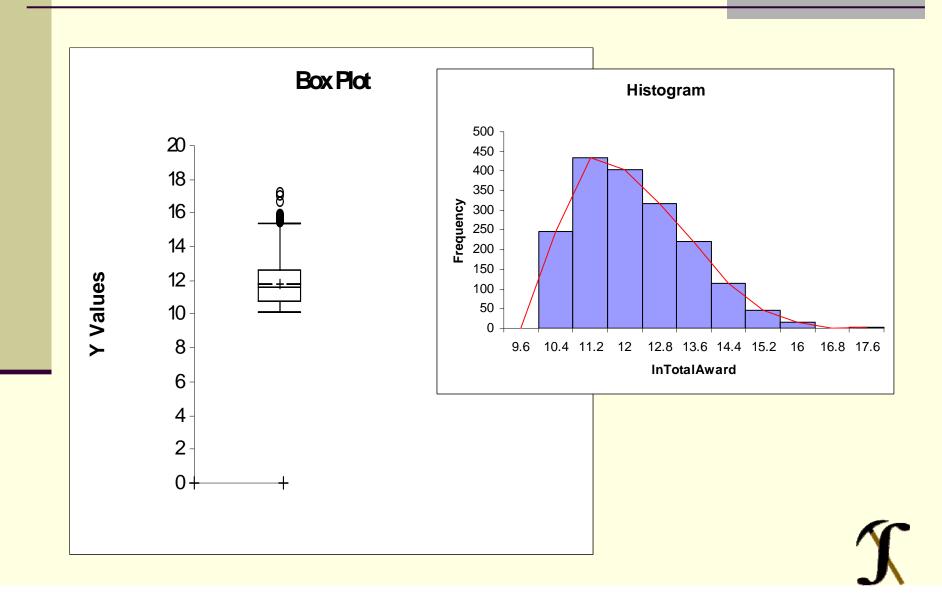
Non-Linear Relationships

- Suppose Relationship between dependent and independent variable is non-linear?
 - Linear regression requires a linear relationship


Transformation of Variables

- Apply a transformation to either the dependent variable, the independent variable or both
- Examples:
 - Y' = log(Y)
 - X' = log(X)
 - X' = 1/X
 - Y'=Y^{1/2}

Transformation of Variables: Skewness of Distribution


Use Exploratory Data Analysis to detect skewness, and heavy tails

L

After Log Transformation

-Data much less skewed, more like Normal, though still skewed

Transformation of Variables

- Suppose the Claim Severity is a function of the log of report lag
 - Compute X' = log(Report Lag)
 - Regress Severity on X'

	Coefficients	Standard Error	t Stat
Intercept	1003.58	5.01	200.43
Log Report Lag	12049.13	78.01	154.46

Categorical Independent Variables: The Other Linear Model: ANOVA

Average of Totalsettlementamountorcourtaward	
Injury	Total
Amputation	567,889
Backinjury	168,747
Braindamage	863,485
Burnschemical	1,097,402
Burnsheat	801,748
Circulatorycondition	302,500

Table above created with Excel Pivot Tables

Model

Model is Model Y = a_i, where i is a category of the independent variable. a_i is the mean of category i.

						Aver age S	èverity By	Injury					
		_											
Aver	age of Trended Severi	ty											
	16,000.00												
	14,000.00												
	12,000.00						_				_		
	10,000.00										H	Dress Opring Fields Lloga	
	8,000.00 6,000.00											Drop Series Fields Here	
	4,000.00				• • • · · ·								
	2,000.00												
	/.				CUT/PU								
		BRUISE	BURN	NG	NCT	EYE	FRACTU RE	OTHER	SPRAIN	STRAIN			
<u> </u>	Total	4,215.78	2, 185.64	2,608.14	1,248.90	534.23	14, 197.4	6, 849. 98	3,960.45	7,493.70			
1													9
					Iniur	y 🛨							

Two Categories

- Model Y = a_i, where i is a category of the independent variable and a_i is its mean
- In traditional statistics we compare a₁ to a₂

If Only Two Categories: T-Test for test of Significance of Independent Variable

	Variable 1	Variable 2
Mean	124,002	440,758
Variance	2.35142E+11	1.86746E+12
Observations	354	1448
Hypothesized Mea	0	
df	1591	
t Stat	-7.1₹	
P(T<=t) one-tail	0.00	
t Critical one-tail	1.65	\backslash
P(T<=t) two-tail	0.00	\mathbf{A}
t Critical two-tail	1.96	\mathbf{A}
/		
		\mathbf{X}
Use T-Test from Exce	el Data Analysis Too	olpak

More Than Two Categories

- Use F-Test instead of T-Test
- With More than 2 categories, we refer to it as an Analysis of Variance (ANOVA)

Fitting ANOVA With Two Categories Using A Regression

- Create A Dummy Variable for Attorney Involvement
- Variable is 1 If Attorney Involved, and 0 Otherwise

Attorneyinvolvement-insurer	Attorney	TotalSettlement
Y	1	25000
Y	1	1300000
Y	1	30000
Ν	0	42500
Y	1	25000
Ν	0	30000
Y	1	36963
Y	1	145000
Ν	0	875000

More Than 2 Categories

- If there are K Categories-
- Create k-1 Dummy Variables
 - Dummy_i = 1 if claim is in category i, and is 0 otherwise
- The kth Variable is 0 for all the Dummies
- Its value is the intercept of the regression

Design Matrix

Severity	Injury	Dummy 1	Dummy 2	Dummy 3	Dummy 4	Dummy 5	Dummy 6	Dummy 7	Dummy 8
-	BRUISE	0	1	0	0	0	0	Û	0
271.53	OTHER	0	0	0	0	0	0	٥	0
751.71	STRAIN	0	0	1	0	0	0	0	0
762.08	FRACTURE	0	0	0	0	1	0	۵	0
798.75	CUT/PUNCT	1	0	0	0	0	0	0	0
382.20	BRUISE	0	1	0	0	0	0	Û	0
171.35	EYE	0	0	0	0	0	0	1	0

Injury Code	Injury_Backin jury		Injury_Nervou scondition	
	jury	enijunes	Scondition	
1	0	0	0	0
1	0	0	0	0
12	1	0	0	0
11	0	1	0	0
17	0	0	0	1

Top table Dummy variables were hand coded, Bottom table dummy variables created by XLMiner.

Regression Output for Categorical Independent

SUMMARY OUTPUT

Regression	Statistics
Multiple R	0.16
R Square	0.03
Adjusted R Square	0.02
Standard Error	19,621.92
Observations	4,112.00

ANOVA

	ďf	SS	MS	F	Significance F
Regression	8	4.38E+10	5.45E+09	14	4 0
Residual	4103	1.58E+12	3.85E+08		
Total	4111	1 62E+12			

	Coefficients	Standard Error	l Stat	P-yable	Lower 95%	Upper 95%
Intercept	6,410.86	954.05	6.72	0.00	4,540.40	8,281.32
Dummy 1	(5,130.72)	1,130.93	(4.54)	0.00	(7,347.96)	(2,913.48)
Dummy 2	(2,153.48)	1,147.89	(1.88)	0.06	(4,403.98)	97.00
Dummy 3	1,140.73	1,148.45	0.99	0.32	(1,110.86)	3,392.31
Dummy 4	(2,332.76)	1,683.84	(1.39)	0.17	(5,634.00)	968.48
Dummy 5	8,148.78	1,716.79	4.75	0.00	4,782.94	11,514.61
Dummy 6	(4,205.91)	1,656.39	(2.54)	0.01	(7,453 34)	(958.48)
Dummy 7	(5,871.33)	2,299 01	(2 55)	0.01	(10,378 63)	(1,364.03)
Dummy 8	(5,532.85)	2,516.55	(2 20)	0.03	(10,466.65)	(599.04)

A More Complex Model Multiple Regression

• Let
$$Y = a + b_1^*X_1 + b_2^*X_2 + ...b_n^*X_n + e$$

 The X's can be numeric variables or categorical dummies

Multiple Regression

Y = a + b1* Initial Reserve+ b2* Report Lag + b3*PolLimit

+ b4*age+ c_i Attorney_i+ d_k Injury_k+e

SUMMARY OUTPUT

Regression Statis	stics			
Multiple R	0.49844			
R Square	0.24844			
Adjusted R Square	0.24213			
Standard Error	1.10306			
Observations	1802			
ANOVA				
	df	SS	MS	F
Regression	15	718.36	47.89	39.360
Residual	1786	2173.09	1.22	
Total	1801	2891.45		
	Coefficients	Standard Error	t Stat	P-value
Intercept	10.052	0 4 5 0	64.374	
		0.156	04.374	0.000
InInitialIndemnityRes	0.105	0.156	9.588	0.000
InInitialIndemnityRes InReportlag				
InInitialIndemnityRes	0.105	0.011	9.588	0.000
InInitialIndemnityRes InReportlag	0.105 0.020	0.011 0.011	9.588 1.887	0.000 0.059
InInitialIndemnityRes InReportlag Policy Limit	0.105 0.020 0.000	0.011 0.011 0.000	9.588 1.887 4.405	0.000 0.059 0.000
InInitialIndemnityRes InReportlag Policy Limit Clmt Age	0.105 0.020 0.000 -0.002	0.011 0.011 0.000 0.002	9.588 1.887 4.405 -1.037	0.000 0.059 0.000 0.300
InInitialIndemnityRes InReportlag Policy Limit Clmt Age Attorney	0.105 0.020 0.000 -0.002 0.718	0.011 0.011 0.000 0.002 0.068	9.588 1.887 4.405 -1.037 10.599	$0.000 \\ 0.059 \\ 0.000 \\ 0.300 \\ 0.000$
InInitialIndemnityRes InReportlag Policy Limit CImt Age Attorney Injury_Backinjury	0.105 0.020 0.000 -0.002 0.718 -0.150	0.011 0.011 0.000 0.002 0.068 0.075	9.588 1.887 4.405 -1.037 10.599 -1.995	0.000 0.059 0.000 0.300 0.000 0.046
InInitiaIIndemnityRes InReportlag Policy Limit CImt Age Attorney Injury_Backinjury Injury_Braindamage	0.105 0.020 0.000 -0.002 0.718 -0.150 0.834	0.011 0.011 0.000 0.002 0.068 0.075 0.224	9.588 1.887 4.405 -1.037 10.599 -1.995 3.719	0.000 0.059 0.000 0.300 0.000 0.046 0.000

T

More Than One Categorical Variable

- For each categorical variable
 - Create k-1 Dummy variables
 - K is the total number of variables
 - The category left out becomes the "base" category
 - It's value is contained in the intercept
 - Model is $Y = a_i + b_i + ... + e$ or
 - Y = $u+a_i + b_j + ... + e_i$, where $a_i + b_j$ are offsets to u
 - e is random error term

Correlation of Predictor Variables: Multicollinearity

Ins Index	CPI	Employment F	PchangeEmp	UEP Rate	Cng UEP	Residual Resi
11.7	136.2	117,718	0.00%	00	10	1 951 0
12.7	140.3	118,492	Correlation			? 🔀
13.6	144.5	120,259	Input			
13.8	148.3	123,060	Input Range:	D.	!\$C\$4:\$G\$17 💦 🛃	
14.3	152.4	124,900	Grouped By:	œ	Columns	Cancel
14.5	156.9	126,708		_	Rows	Help
15.1	160.6	129,558	Labels in firs		_	
15.7	163.0	131,463				
16.1	166.6	133,488	Output options		- 1	
17.3	172.2	136,891	C Output Ran	ige:	<u> </u>	
18.9	177.1	136,933	New Workst	heet <u>P</u> ly:		
20.7	179.9	136,485	C New Workb	ook		
23.6	184.0	137,736	L			

Multicollinearity

- Predictor variables are assumed uncorrelated
- Assess with correlation matrix

	ins index	CPI	Employment	PchangeEmp	UEP Rale	Cng UEP
ins index	1.000					
CFI	0.942	1.000				
Employment	0.876	0.984	1.000			
PchangeEmp	(0.125)	0.016	0.092	1.000		
UEP Rate	(0.344)	(0.622)	(0.742)	(0.419)	1.000	
Cng UEP	0.254	0.143	0.077	(0.926)	0.321	1.000

Remedies for Multicollinearity

- Drop one or more of the highly correlated variables
- Use Factor analysis or Principle components to produce a new variable which is a weighted average of the correlated variables
- Use stepwise regression to select variables to include

Similarities with GLMs

Linear Models

- Transformation of Variables
- Use dummy coding for categorical variables
- Residual
- Test significance of coefficients

<u>GLMs</u>

- Link functions
- Use dummy coding for categorical variables
- Deviance
- Test significance of coefficients

Introductory Modeling Library Recommendations

- Berry, W., Understanding Regression Assumptions, Sage University Press
- Iversen, R. and Norpoth, H., Analysis of Variance, Sage University Press
- Fox, J., *Regression Diagnostics*, Sage University Press
- Data Mining for Business Intelligence, Concepts, Applications and Techniques in Microsoft Office Excel with XLMiner,Shmueli, Patel and Bruce, Wiley 2007
- De Jong and Heller, Generalized Linear Models for Insurance Data, Cambridge, 2008