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Objectives

Gentle introduction to Linear 
Models
Illustrate some simple applications 
of linear models
Address some practical modeling 
issues

Show features common to LMs 
and GLMs



Predictive Modeling Family

Predictive Modeling

Classical Linear Models GLMs Data Mining



Linear Models Are Basic Statistical 
Building Blocks: Ex:Mean Payment by Age Group



Linear Model for Means: A Step 
Function Ex:Mean Payment by Age Group



Linear Models Based on Means
Payment by Age Group and Attorney Involvement



An Introduction to Linear Regression
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Intro to  Regression Cont.

Fits line that minimizes squared deviation between actual and 
fitted values
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Some Work Related Liability Data
Closed Claims from Tx Dept of Insurance

Total Award
Initial Indemnity reserve
Policy Limit
Attorney Involvement
Lags

Closing
Report

Injury
Sprain, back injury, death, etc

Data, along with some of analysis will be posted on internet



Simple Illustration
Total Settlement vs. Initial Indemnity Reserve



How Strong Is Linear Relationship?: 
Correlation Coefficient

Varies between -1 and 1
Zero = no linear correlation

lnInitialIndemnityRes lnTotalAward lnInitialExpense lnReportlag
lnInitialIndemnityRes 1.000
lnTotalAward 0.303 1.000
lnInitialExpense 0.118 0.227 1.000
lnReportlag -0.112 0.048 0.090 1.000



Scatterplot Matrix

Prepared with Excel add-in XLMiner



Linear Modeling Tools Widely 
Available: Excel Analysis Toolpak

Install Data 
Analysis Tool 
Pak (Add In) that 
comes wit Excel
Click Tools, Data 
Analysis, 
Regression



How Good is the fit?



First Step: Compute residual
Residual = actual – fitted

Sum the square of the residuals (SSE)
Compute total variance of data with no 
model (SST)

Y=lnTotal
Award Predicted Residual
10.13 11.76 -1.63
14.08 12.47 1.61
10.31 11.65 -1.34



Goodness of Fit Statistics

R2: (SSE Regression/SS Total)
percentage of variance explained

Adjusted R2

R2 adjusted for number of coefficients in 
model

Note SSE = Sum squared errors
MS is Mean Square Error



R2 Statistic



Significance of Regression

F statistic: 
(Mean square error of Regression/Mean 
Square Error of Residual)
Df of numerator = k = number of predictor vars
Df denominator = N - k



ANOVA (Analysis of Variance) Table

Standard way to evaluate fit of model
Breaks Sum Squared Error into model and 
residual components



Goodness of Fit Statistics

T statistics: Uses SE of coefficient to 
determine if it is significant 

SE of coefficient is a function of s (standard 
error of regression)
Uses T-distribution for test
It is customary to drop variable if coefficient 
not significant



T-Statistic: Are the Intercept and 
Coefficient Significant?

Coefficients
Standard 

Error t Stat P-value
Intercept 10.343 0.112 92.122 0
lnInitialIndemnity
Res 0.154 0.011 13.530 8.21E-40



Other Diagnostics: Residual Plot
Independent Variable vs. Residual

Points should scatter randomly around zero
If not, regression assumptions are violated



Predicted vs. Residual



Random Residual

DATA WITH NORMALLY DISTRIBUTED ERRORS RANDOMLY 
GENERATED



What May Residuals Indicate?

If absolute  size of residuals increases as 
predicted increases, may indicate non-
constant variance 

may indicate need to log dependent variable
May need to use weighted regression

May indicate a nonlinear relationship



Standardized Residual: Find Outliers
N
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Outliers

May represent error
May be legitimate but have undue influence 
on regression
Can downweight oultliers

Weight inversely proportional to variance of 
observation
Robust Regression

Based on absolute deviations
Based on lower weights for more extreme 
observations



Non-Linear Relationship



Non-Linear Relationships

Suppose Relationship between dependent and 
independent variable is non-linear?
Linear regression requires a linear relationship



Transformation of Variables

Apply a transformation to either the 
dependent variable, the independent variable 
or both
Examples:

Y’ = log(Y)
X’ = log(X)
X’ = 1/X
Y’=Y1/2



Transformation of Variables: 
Skewness of Distribution
Use Exploratory Data Analysis to detect skewness, and heavy tails



After Log Transformation
-Data much less skewed, more like Normal, though still skewed

Box Plot
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Transformation of Variables

Suppose the Claim Severity is a function of the 
log of report lag

Compute X’ = log(Report Lag)
Regress Severity on X’



Categorical Independent Variables:
The Other Linear Model: ANOVA

Average of Totalsettlementamountorcourtaward
Injury Total
Amputation 567,889     
Backinjury 168,747     
Braindamage 863,485     
Burnschemical 1,097,402  
Burnsheat 801,748     
Circulatorycondition 302,500     

Table above created with Excel Pivot Tables



Model

Model is Model Y = ai, where i is a category of 
the independent variable. ai is the mean of 
category i.
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Two Categories

Model Y = ai, where i is a category 
of the independent variable and ai
is its mean
In traditional statistics we compare 
a1 to a2



If Only Two Categories: T-Test for test of 
Significance of Independent Variable

Variable 1 Variable 2
Mean 124,002              440,758              
Variance 2.35142E+11 1.86746E+12
Observations 354 1448
Hypothesized Mea 0
df 1591
t Stat -7.17
P(T<=t) one-tail 0.00
t Critical one-tail 1.65
P(T<=t) two-tail 0.00
t Critical two-tail 1.96

Use T-Test from Excel Data Analysis Toolpak



More Than Two Categories

Use F-Test instead of T-Test
With More than 2 categories, we refer to it as 
an Analysis of Variance (ANOVA)



Fitting ANOVA With Two Categories 
Using A Regression

Create A Dummy Variable for Attorney 
Involvement
Variable is 1 If Attorney Involved, and 0 
Otherwise
Attorneyinvolvement-insurer Attorney TotalSettlement

Y 1 25000
Y 1 1300000
Y 1 30000
N 0 42500
Y 1 25000
N 0 30000
Y 1 36963
Y 1 145000
N 0 875000



More Than 2 Categories

If there are K Categories-
Create k-1 Dummy Variables

Dummyi = 1 if claim is in category i, and is 0 
otherwise

The kth Variable is 0 for all the Dummies
Its value is the intercept of the regression



Design Matrix

Injury Code Injury_Backin
jury

Injury_Multipl
einjuries

Injury_Nervou
scondition Injury_Other

1 0 0 0 0
1 0 0 0 0

12 1 0 0 0
11 0 1 0 0
17 0 0 0 1

Top table Dummy variables were hand coded, Bottom 
table dummy variables created by XLMiner.



Regression Output for Categorical 
Independent



A More Complex Model Multiple 
Regression

• Let Y = a + b1*X1 + b2*X2 + 
…bn*Xn+e

• The X’s can be numeric variables 
or categorical dummies



Multiple Regression
Y = a + b1* Initial Reserve+ b2* Report Lag + b3*PolLimit 
+ b4*age+ ciAttorneyi+dkInjury k+e

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.49844
R Square 0.24844
Adjusted R Square 0.24213
Standard Error 1.10306
Observations 1802

ANOVA
df SS MS F

Regression 15 718.36 47.89 39.360
Residual 1786 2173.09 1.22
Total 1801 2891.45

Coefficients Standard Error t Stat P-value
Intercept 10.052 0.156 64.374 0.000
lnInitialIndemnityRes 0.105 0.011 9.588 0.000
lnReportlag 0.020 0.011 1.887 0.059
Policy Lim it 0.000 0.000 4.405 0.000
Clmt Age -0.002 0.002 -1.037 0.300
Attorney 0.718 0.068 10.599 0.000
Injury_Backinjury -0.150 0.075 -1.995 0.046
Injury_Braindamage 0.834 0.224 3.719 0.000
Injury_Burnschemical 0.587 0.247 2.375 0.018
Injury_Burnsheat 0.637 0.175 3.645 0.000
Injury_Circulatorycondition 0.935 0.782 1.196 0.232



More Than One Categorical Variable

For each categorical variable
Create k-1 Dummy variables
K is the total number of variables
The category left out becomes the “base”
category
It’s value is contained in the intercept
Model is Y = ai + bj + …+ e or

Y = u+ai + bj + …+ e, where ai + bj
are offsets to u

e is random error term



Correlation of Predictor Variables: 
Multicollinearity



Multicollinearity

• Predictor variables are assumed 
uncorrelated

• Assess with correlation matrix



Remedies for Multicollinearity

• Drop one or more of the highly correlated 
variables

• Use Factor analysis or Principle components 
to produce a new variable which is a 
weighted average of the correlated variables

• Use stepwise regression to select variables 
to include



Similarities with GLMs

Linear Models
Transformation of 
Variables
Use dummy coding for 
categorical variables
Residual
Test significance of 
coefficients

GLMs
Link functions

Use dummy coding for 
categorical variables
Deviance
Test significance of 
coefficients



Introductory Modeling Library 
Recommendations
• Berry, W., Understanding Regression Assumptions, 

Sage University Press
• Iversen, R. and Norpoth, H., Analysis of Variance, 

Sage University Press
• Fox, J., Regression Diagnostics, Sage University 

Press
• Data Mining for Business Intelligence, Concepts, 

Applications and Techniques in Microsoft Office 
Excel with XLMiner,Shmueli, Patel and Bruce, Wiley 
2007

• De Jong and Heller, Generalized Linear Models for 
Insurance Data, Cambridge, 2008


