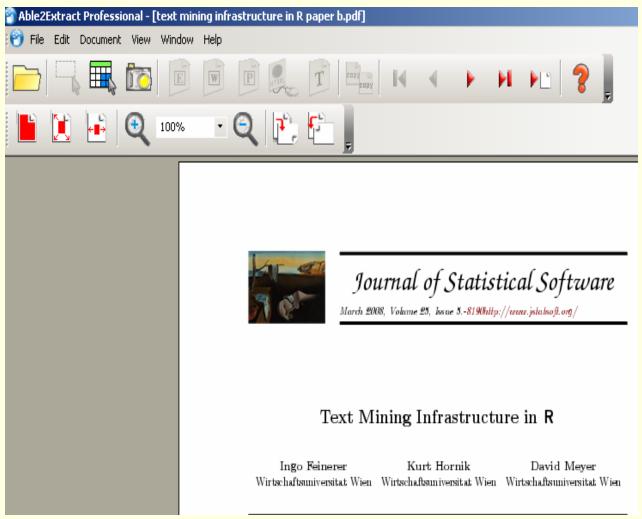
An Introduction to Text Mining CAS 2008 Predictive Modeling Seminar

Prepared by
Louise Francis
Francis Analytics and Actuarial Data Mining, Inc.
Oct, 2008
Louise_francis@msn.com

www.data-mines.com


Objectives

- Present a new data mining technology
- Show how the technology uses a combination of
 - String processing functions
 - Natural language processing
 - Common multivariate procedures available in statistical most statistical software
- Discuss practical issues for implementing the methods
- Discuss software for text mining

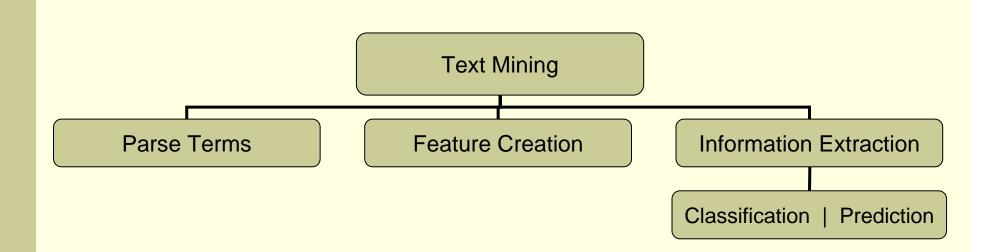
Text Mining: Uses Growing in Many Areas

Optical Character Recognition software used to convert image to document

Major Kinds of Modeling

- Supervised learning
 - Most common situation
 - A dependent variable
 - Frequency
 - Loss ratio
 - Fraud/no fraud
 - Some methods
 - Regression
 - CART
 - Some neural networks

- Unsupervised learning
 - No dependent variable
 - Group like records together
 - A group of claims with similar characteristics might be more likely to be fraudulent
 - Applications:
 - Territory Groups
 - Text Mining
 - Some methods
 - Association rules
 - K-means clustering
 - Kohonen neural networks



Text Mining vs. Data Mining

	Analysis Types	Non-novel information	Novel information	Comment
	standard		new patterns	
	predictive	database	and	small fraction
Non-text data	modeling	queries	relationships	of data
	computational			
	linguistics/stati			
	stical mining	information		
Text data	of text data	retrieval	text mining	

modified from Manning/Hearst

Text Mining Process

String Processing

Example: Claim Description Field

INJURY DESCRIPTION

BROKEN ANKLE AND SPRAINED WRIST

FOOT CONTUSION

UNKNOWN

MOUTH AND KNEE

HEAD, ARM LACERATIONS

FOOT PUNCTURE

LOWER BACK AND LEGS

BACK STRAIN

KNEE

Parse Text Into Terms

- Separate free form text into words
- "BROKENANKLE AND SPRAINED WRIST" →
 - BROKEN
 - ANKLE
 - AND
 - SPRAINED
 - WRIST

Parsing Text

- Separate words from spaces and punctuation
- Clean up
- Remove redundant words
- Remove words with no content
- Cleaned up list of Words referred to as tokens

Parsing a Claim Description Field With Microsoft Excel String Functions

Full Description	Total Length	Location of Next Blank	First Word	Remainder Length 1
(1)	(2)	(3)	(4)	(5)
BROKEN ANKLE AND SPRAINED WRIST	31	7	BROKEN	24
Remainder 1		2 nd Blank	2 nd Word	Remainder Length 2
(6)		(7)	(8)	(9)
ANKLE AND SPRAINED WRIST		6	ANKLE	18
Remainder 2		3 rd Blank	3 rd Word	Remainder Length 3
(10)		(11)	(12)	(13)
AND SPRAINED WRIST		4	AND	14
Remainder 3		4 th Blank	4 th Word	Remainder Length 4
(14)		(15)	(16)	(17)
SPRAINED WRIST		9	SPRAINED	5
Remainder 4		5 th Blank	5 th Word	
(18)		(19)	(20)	
WRIST		0	WRIST	

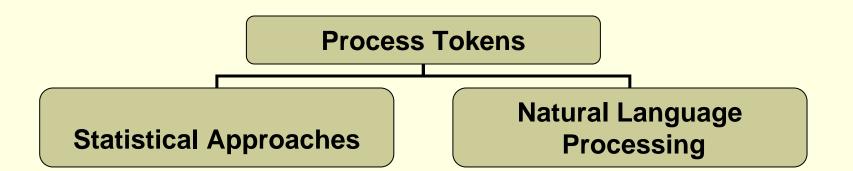
String Functions

Use substring function in R/S-PLUS to find spaces

```
# Initialize
charcount<-nchar(Description)</pre>
# number of records of text
Linecount<-length(Description)
Num<-Linecount*6
# Array to hold location of spaces
Position<-rep(0,Num)
dim(Position)<-c(Linecount,6)</pre>
# Array for Terms
Terms<-rep("",Num)
dim(Terms)<-c(Linecount,6)
wordcount<-rep(0,Linecount)</pre>
```

Search for Spaces

```
for (i in 1:Linecount)
n<-charcount[i]
k<-1
for (j in 1:n)
              Char<-substring(Description[i],j,j)
               if (is.all.white(Char)) {Position[i,k]<-j; k<-k+1}
               wordcount[i]<-k
```

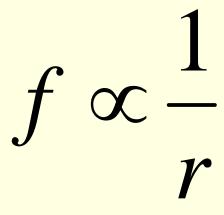

Get Words

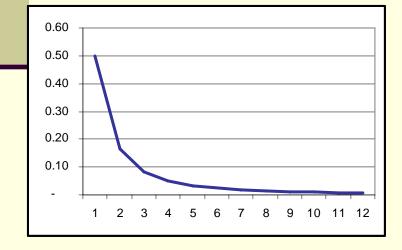
Extraction Creates Binary Indicator Variables

INJURY DESCRIPTION	BROKEN	ANKLE	AND	SPRAINED	W R I S F	F O O T	CONTU -SION	UNKNOWN	NECK	BACK	STRAIN
BROKEN ANKLE AND SPRAINED WRIST	1	1	1	1	1	0	0	0	0	0	0
FOOT CONTUSION	0	0	0	0	0	1	1	0	0	0	0
UNKNOWN	0	0	0	0	0	0	0	1	0	0	0
NECK AND BACK STRAIN	0	0	1	0	0	0	0	0	1	1	1

Processing of Tokens

Further Processing




Natural Language Processing

- Draws on many disciplines
 - Artificial Intelligence
 - Linguistics
 - Statistics
 - Speech Recognition
- Its use in text mining is focuses on understanding the structure of language

Zipff's Law

- Distribution for how often each word occurs in a language
- Inverse relation between rank (r) of word and its frequency (f)

Mandelbrot's Refinement

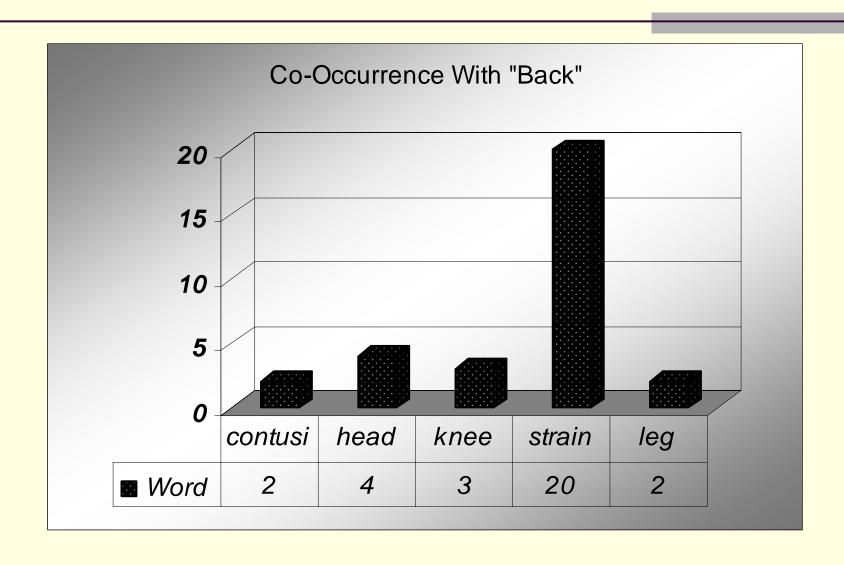
$$f = p(r + \rho)^{-B}$$

Consequences of Zipf

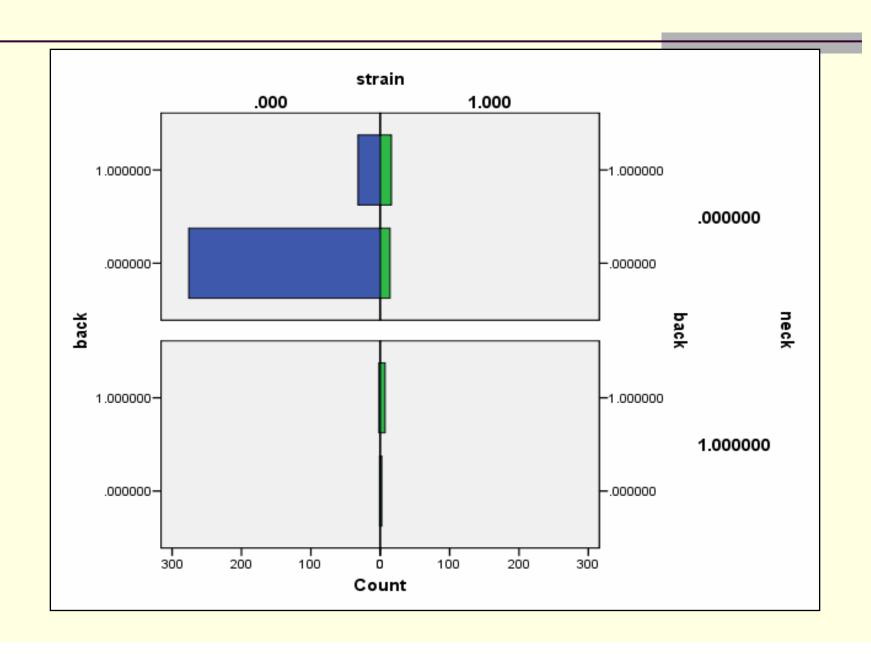
- There are a few very frequent tokens or words that add little to information
 - Known as stop words
 - Examples: a, the, to, from
- Usually
 - Small number of very common words (i.e., stop words)
 - Medium number of medium frequency words
 - Large number of infrequent words
 - The medium frequency words the most useful

Word Frequency in Tom Sawyer

Word	Frequency	Rank	Word Frequency		Rank	
	(f)	(r)		(f)	(r)	
the	3,332	1	group	13	600	
and	2,972	2	lead	11	700	
a	1,775	3	friends	10	800	
he	877	4	begin	9	900	
but	410	5	family	8	1,000	
be	294	6	brushed	4	2,000	
there	222	7	sins	2	3,000	
one	172	8	could	2	4,000	
about	158	9	applausive	1	8,000	


Collocation

- Multiword units, word that go together, phrases with recognized meaning
- Examples from Oct 1 newspaper
 - Philadelphia Inquirer
 - FDIC (Federal Deposit Insurance Corporation)
 - Wall Street
 - New Jersey
 - buffer zone


Concordances

- Finding contexts in which verbs appear
- Use key word in context
- Lists all occurrences of the word and the words that occur with it.

The Word "Back" in claim description

Some Co-Occurrences

Identifying Collocations

- Two most frequent patterns
 - Noun- noun
 - Adjective noun
- Analyst will probably want these phrases in a dictionary

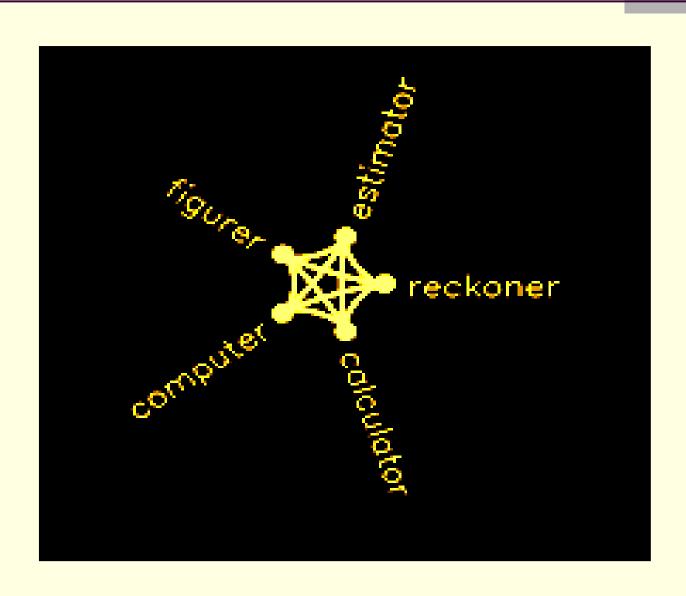

Semantics

- Meaning of words, phrases, sentences and other language structures
 - Lexical semantics
 - Meaning of individual words
 - Examples; synonyms, antonyms
 - Meanings of combinations of words

Wordnet

- Semantic lexicon for English language
- Some Features
 - Synonyms
 - Antonyms
 - Hypernyms
 - Hyponyms
- Developed by Princeton University Cognitive Sciences Laboratory

Wordnet Entry for Insurance



http://wordnet.princeton.edu

Wordnet Visualizations for Underwriter

Hypernyms of Actuary

Eliminate Stopwords

Common words with no meaningful content

Stopwords

Α

And

Able

About

Above

Across

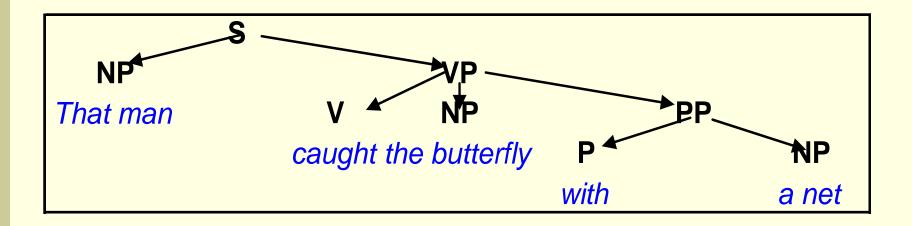
Aforementioned

After

Again

Stemming: Identify Synonyms and Words with Common Stem

Parsed Words				
HEAD	INJURY			
LACERATION				
KNEE	BRUISED			
UNKNOWN	TWISTED			
L	LOWER			
LEG	BROKEN			
ARM	FRACTURE			
R	FINGER			
FOOT	INJURIES			
HAND	LIP			
ANKLE	RIGHT			
HIP	KNEES			
SHOULDER	FACE			
LEFT	FX			
CUT	SIDE			
WRIST	PAIN			
NECK	INJURED			


Part of Speech Morphology

- Parts of Speech (POS)
 - Noun
 - Verb
 - Adjective
 - These are open or lexical categories that have large numbers of members and new members frequently added
 - Also prepositions and determiners
 - Of, on, the, a
 - Generally closed categories

Diagrams of Parts of Speech

- Sentence
- Noun Phrase
- Verb Phrase

Diagramming Parts of Speech

Word Sense Disambiguation

- Many words have multiple possible meanings or senses -- → ambiguity about interpretation
- Word can be used as different part of speech
- Disambiguation determines which sense is being used

Disambiguation

- Statistical methods
- NLP based methods

Disambiguation: An Algorithm

- Build list of associated words and weights for ambiguous word
- Read "context" of ambiguous word, save nouns and adjectives in list
- Get list of senses of ambiguous word from dictionary and do for each:
 - Assign initial score to current sense
 - Scan list of context words
 - For each check if it is associated word, then increment or decrement score
- Sort scores in descending order and list top scoring senses

From Konchady, Text Mining Application Programming

Statistical Approaches

Objective

- Create a new variable from free form text
- Use words in injury description to create an injury code
- New injury code can be used in a predictive model or in other analysis

Dimension Reduction

	CLAMNUMBER	DATE OF LOSS	STATUS	NCLFRED LOSS
				VARIABLES
	1998001	09/15/97	С	407.81
	1998002	09/25/97	C	0.00
	1998003	09/28/97	С	0.00
	1998004	09/29/97	С	8,247.16
	1998005	09/29/97	G	0.00
	1998006	10/02/97	С	0.00
	1998007	10/1097	С	0.00
	1998008	10/2497	G	0.00
7	1998009	10/29/97	C	21,211.86
	1998010	10/29/97	C	0.00
R	1998011	11/03/97	G	0.00
E	1998012	11/03/97	С	0.00
	1998013	11/04/97	С	451.88
	1998014	11/04/97	C	0.00
R	1998015	11/04/97	С	0.00
	1998016	11/08/97	С	15,903.66
S	1998017	11/11/97	C	485.10

The Two Major Categories of Dimension Reduction

- Variable reduction
 - Factor Analysis
 - Principal Components Analysis
- Record reduction
 - Clustering
- Other methods tend to be developments on these

Clustering

- Common Method: k-means and hierarchical clustering
- No dependent variable records are grouped into classes with similar values on the variable
- Start with a measure of similarity or dissimilarity
- Maximize dissimilarity between members of different clusters

Dissimilarity (Distance) Measure – Continuous Variables

Euclidian Distance

$$d_{ij} = \left(\sum_{k=1}^{m} (x_{ik} - x_{jk})^2\right)^{1/2}$$
 i, j = records k=variable

Manhattan Distance

$$d_{ij} = \left(\sum_{k=1}^{m} \left| x_{ik} - x_{jk} \right| \right)$$

K-Means Clustering

- Determine ahead of time how many clusters or groups you want
- Use dissimilarity measure to assign all records to one of the clusters

Cluster Number		back	contusion	head	knee	strain	unknown	laceration
	1	0.00	0.15	0.12	0.13	0.05	0.13	0.17
	2	1.00	0.04	0.11	0.05	0.40	0.00	0.00

Hierarchical Clustering

- A stepwise procedure
- At beginning, each records is its own cluster
- Combine the most similar records into a single cluster
- Repeat process until there is only one cluster with every record in it

Hierarchical Clustering Example

Dendogram for 10 Terms

Rescaled Distance Cluster Combine

CASE		0	5	10	15	2	0 25
Label	Num	+	+		+		++
	0						
arm	9	$\hat{\mathbf{u}}$					
foot	10	<u>(</u> 1√5 - ()	1000000	11117			
leg	8	11111115		- 111111	00000000		
laceration	. 7	00000	1000000	1111115		1117	
contusion	2	00000	1000000	0000000000	0,000 × 0,000	□ ÛÛ	ÛΦ
head	3	0000000	1000000	0000000000	JJJ ₁₂	\Leftrightarrow	- 111111111177
knee	4	0000000	1000000	0000000000		<u> </u>	⇔ ⇔
unknown	6	0000000	1000000	0000000000		000000	☆ ⇔
back	1	0000000	• 000000	0000000000		000000	000000000000000000000000000000000000000
strain	5	0000000	?				

Final Cluster Selection

Cluster	Back	Contusion	head	knee	strain	unknown	laceration	Leg
1	0.000	0.000	0.000	0.095	0.000	0.277	0.000	0.000
2	0.022	1.000	0.261	0.239	0.000	0.000	0.022	0.087
3	0.000	0.000	0.162	0.054	0.000	0.000	1.000	0.135
4	1.000	0.000	0.000	0.043	1.000	0.000	0.000	0.000
5	0.000	0.000	0.065	0.258	0.065	0.000	0.000	0.032
6	0.681	0.021	0.447	0.043	0.000	0.000	0.000	0.000
7	0.034	0.000	0.034	0.103	0.483	0.000	0.000	0.655
Weighted Average	0.163	0.134	0.120	0.114	0.114	0.108	0.109	0.083

Use New Injury Code in a Logistic Regression to Predict Serious Claims

$$Y = B_0 + B_1 Attorney + B_2 Injury _Group$$

$$Y = Claim Severity > $10,000$$

Mean Probability of Serious Claim vs. Actual Value

	Actual Value				
	1	0			
Avg					
Prob	0.31	0.01			

Software for Text Mining-Commercial Software

- Most major software companies, as well as some specialists sell text mining software
 - These products tend to be for large complicated applications, such as classifying academic papers
 - They also tend to be expensive
- One inexpensive product reviewed by American Statistician had disappointing performance

Perl for Text Processing

- Free open source programming language
- www.perl.org
- Used a lot for text processing
- Perl for Dummies gives a good introduction

Perl Functions for Parsing

```
$TheFile ="GLClaims.txt";
$Linelength=length($TheFile);
open(INFILE, $TheFile) or die "File not found";
# Initialize variables
$Linecount=0;
@alllines=();
while(<INFILE>){
$Theline=$;
chomp($Theline);
 $Linecount = $Linecount+1;
 $Linelength=length($Theline);
  @Newitems = split(/ /,$Theline);
 print "@Newitems \n";
  push(@alllines, [@Newitems]);
} # end while
```

Commercial Software for Text Mining

ActivePoint, offering natural | AeroText, a high performanc Arrowsmith software for supp Attensity, offers a complete s ext Data Mining and Analysis Basis Technology, provides I ClearForest, tools for analysis and Compare Suite, compares te Connexor Machinese, discov Copernic Summarizer, can re Corpora, a Natural Language rossminder, natural langua Cypher, generates the RDF (DolphinSearch, text-reading dtSearch, for indexing, searc Laagle text mining software. Enkata, providing a range of Entrieva, patented technolog Expert System, using proprie Files Search Assistant, quick IBM Intelligent Miner Data M Intellexer, natural language s Insightful InFact, an enterpris Inxight, enterprise software s ISYS:desktop, searches over Kwalitan 5 for Windows, use:

Leximancer, makes automatic Lextek Onix Toolkit, for adding Lextek Profiling Engine, for au Linguamatics, offering Natural Megaputer Text Analyst, offers Monarch, data access and ana NewsFeed Researcher, prese Nstein, Enterprise Search and Power Text Solutions, extensive Readability Studio, offers tools Recommind MindServer, uses SAS Text Miner, provides a ric SPSS LexiQuest, for accessin SPSS Text Mining for Clemen SWAPit, Fraunhofer-FIT's text TEMIS Luxid®, an Information TeSSI®, software components Text Analysis Info, offering sof Textalyser, online text analysis TextOre, providing B2B analyt TextPipe Pro, text conversion, TextQuest, text analysis softw Readware Information Process Quenza, automatically extract VantagePoint provides a varie VisualText™, by TextAI is a co Wordstat, analysis module for te

Free Software for Text Mining

GATE, a leading open-so INTEXT, MS-DOS version LingPipe is a suite of Jav Upen Calais, an open-so S-EM (Spy-EM), a text cl The Semantic Indexing F Vivisimo/Clusty web sea

References

- Hoffman, P, Perl for Dummies, Wiley, 2003
- Francis, L., "Taming Text", 2006 CAS Winter Forum
- Weiss, Shalom, Indurkhya, Nitin, Zhang, Tong and Damerau, Fred, *Text Mining*, Springer, 2005
- Konchady, Manu, Text Mining Application Programming, Thompson, 2006
- Manning and Schultze, Foundations of Statistical Natural Language Processing, MIT Press, 1999

Questions?