

# Introduction to Hierarchical Modeling

CAS Predictive Modeling Seminar San Diego October, 2008 Jim Guszcza Bill Stergiou Deloitte Consulting **Hierarchical Data Structures** 

Hierarchical Modeling Theory

Sample Hierarchical Model

Hierarchical Models and Credibility Theory

Final Example: Loss Reserving

# What is Hierarchical Modeling?

- Hierarchical modeling is used when one's data is *grouped* in some important way.
  - Claim experience by state or territory
  - Workers Comp claim experience by class code
  - Income by profession
  - Claim severity by injury type
  - Churn rate by agency
  - Multiple years of loss experience by policyholder.
  - ...
- Often grouped data is modeled either by:
  - Pooling the data and introducing dummy variables to reflect the groups
  - Building separate models by group
- Hierarchical modeling offers a "third way".
  - Parameters reflecting group membership enter one's model through appropriately specified *probability sub-models*.

## What's in a Name?

- Hierarchical models go by many different names
  - Mixed effects models
  - Random effects models
  - Multilevel models
  - Longitudinal models
  - Panel data models
- We prefer the "hierarchical model" terminology because it evokes the way models-within-models are used to reflect levels-within-levels of ones data.
- An important special case of hierarchical models involves multiple observations through time of each unit.
  - Here group membership is the repeated observations belonging to each individual.
  - Time is the covariate.

# Varying Slopes and Intercepts

Random Intercept Model



- Intercept varies with group
- Slope stays constant



Random Slope

- Intercept stays constant
- Slope varies by group

Random Intercept / Random Slope Model



- Intercept and slope vary by group
- Each line represents a different group

#### **Common Hierarchical Models**

- Notation:
  - Data points  $(\boldsymbol{X}_{i}, Y_{i})_{i=1...N}$
  - *j*[*i*]: data point *i* belongs to group *j*.
- Classical Linear Model
  - Equivalently:  $Y_i \sim N(\alpha + \beta X_i, \sigma^2)$
  - Same  $\alpha$  and  $\beta$  for every data point
- Random Intercept Model
  - Where  $\alpha_j \sim N(\mu_{\alpha}, \sigma^2_{\alpha})$  &  $\varepsilon_i \sim N(0, \sigma^2)$
  - Same  $\beta$  for every data point; but  $\alpha$  varies by group
- Random Intercept and Slope Model
  - Where  $(\alpha_i, \beta_i) \sim N(M, \Sigma) \& \epsilon_i \sim N(0, \sigma^2)$
  - Both  $\alpha$  and  $\beta$  vary by group

$$Y_{i} \sim N\left(\alpha_{j[i]} + \beta_{j[i]} \cdot X_{i}, \sigma^{2}\right) \quad where \quad \begin{pmatrix}\alpha_{j}\\\beta_{j}\end{pmatrix} \sim N\left(\begin{bmatrix}\mu_{\alpha}\\\mu_{\beta}\end{bmatrix}, \Sigma\right) \quad , \quad \Sigma = \begin{bmatrix}\sigma_{\alpha}^{2} & \sigma_{\alpha\beta}\\\sigma_{\alpha\beta} & \sigma_{\beta}^{2}\end{bmatrix}$$

$$\boldsymbol{Y}_i = \alpha + \beta \boldsymbol{X}_i + \varepsilon_i$$

$$\boldsymbol{Y}_{i} = \boldsymbol{\alpha}_{j[i]} + \boldsymbol{\beta}\boldsymbol{X}_{i} + \boldsymbol{\varepsilon}_{i}$$

 $\boldsymbol{Y}_{i} = \alpha_{j[i]} + \beta_{j[i]}\boldsymbol{X}_{i} + \varepsilon_{i}$ 

5

#### Parameters and Hyperparameters

• We can rewrite the random intercept model this way:

$$Y_i \sim N(\alpha_{j[i]} + \beta X_i, \sigma^2) \qquad \alpha_j \sim N(\mu_\alpha, \sigma_\alpha^2)$$

- This model contains 9 parameters: { $\alpha_1$ ,  $\alpha_2$ , ...,  $\alpha_8$ ,  $\beta$ }.
- And it contains 4 <u>hyperparameters</u>: { $\mu_{\alpha}$ ,  $\beta_2$ ,  $\sigma$ ,  $\sigma_{\alpha}$ }.
- Here is how the hyperparameters relate to the parameters:

$$\hat{\alpha}_{j} = Z_{j} \cdot (\overline{y}_{j} - \beta \overline{x}_{j}) + (1 - Z_{j}) \cdot \hat{\mu}_{\alpha} \quad \text{where} \quad Z_{j} = \frac{n_{j}}{n_{j} + \sigma^{2} / \sigma_{\alpha}^{2}}$$

Does this formula look familiar?

#### Example

- Suppose we wish to model a company's policies in force, by region, for the years 2005-08.
- 8 \* 4 = 32 data points.
- One way to visualize the data:
  - Plot all of the data points on the same graph, use different colors/symbols to represent region.
- Alternate way:
  - Use a trellis-style display, with one plot per region
  - More immediate representation of the data's hierarchical structure.
  - (see next slide)



#### Policies in Force by Year and Region

#### Trellis-Style Data Display

- We wish to build a model that captures the change in PIF over time.
- We must reflect the fact that PIF varies by region.



#### Option 1: Simple Regression

- The easiest thing to do is to pool the data across groups -- i.e. simply ignore region
- Fit a simple linear model
- Alas, this model is not appropriate for all regions





#### Option 2: Separate Models by Region

- At the other extreme, we can fit a separate simple linear model for each region.
- $\left\{PIF = \alpha^{k} + \beta^{k}t + \varepsilon^{k}\right\}_{k=1,2,\dots,8}$

10

- Each model is fit with 4 data points.
- Introduces danger of over-fitting the data.



#### **Option 3: Random Intercept Hierarchical Model**

• Compromise: Reflect the region group structure using a hierarchical model.



# Compromise Between Complete Pooling & No Pooling

$$PIF = \alpha + \beta t + \varepsilon$$

#### **Complete Pooling**

• Ignore group structure altogether

 $\left\{PIF = \alpha^{k} + \beta^{k}t + \varepsilon^{k}\right\}_{k=1,2,\dots,8}$ 

No Pooling

• Estimating one model for each group

12



#### Option 1b: Adding Dummy Variables

- Question: of course it'd be crazy to fit a separate SLR for each region.
- But what about adding 8 region dummy variables into the SLR?

$$PIF = \gamma_1 R_1 + \gamma_2 R_2 + \ldots + \gamma_8 R_8 + \beta t + \varepsilon$$

- If we do this, we need to estimate 9 parameters instead of 2.
- In contrast, the random intercept model contains 4 <u>hyperparameters:</u>  $\mu_{\alpha},\ \beta,\ \sigma,\ \sigma_{\alpha}$
- Now suppose our example contained 800 regions. If we use dummy variables, our SLR potentially requires that we estimate 801 parameters.
- But the random intercept model will contain the same 4 hyperparameters.

# Varying Slopes

• The random intercept model is a compromise between a "pooled" SLR and a separate SLR by region.

$$PIF \sim N(\alpha_{j[i]} + \beta t, \sigma^2) \qquad \alpha_j \sim N(\mu_\alpha, \sigma_\alpha^2)$$

• But there is nothing sacred about the intercept term: we can also allow the slopes to vary by region.

$$Y_{i} \sim N\left(\alpha_{j[i]} + \beta_{j[i]} \cdot X_{i}, \sigma^{2}\right) \quad where \quad \begin{pmatrix}\alpha_{j}\\\beta_{j}\end{pmatrix} \sim N\left(\begin{bmatrix}\mu_{\alpha}\\\mu_{\beta}\end{bmatrix}, \Sigma\right) \quad , \quad \Sigma = \begin{bmatrix}\sigma_{\alpha}^{2} & \sigma_{\alpha\beta}\\\sigma_{\alpha\beta} & \sigma_{\beta}^{2}\end{bmatrix}$$

- In the dummy variable option (1b) this would require us to interact region with the time *t* variable... i.e. it would return us to option 2.
  - Great danger of overparameterization.
- Adding random slopes adds considerable flexibility at the cost of only two additional hyperparameters.
  - Random slope only:  $\mu_{\alpha}$ ,  $\beta$ ,  $\sigma$ ,  $\sigma_{\alpha}$
  - Random slope & intercept:  $\mu_{\alpha}$ ,  $\mu_{\beta}$ ,  $\sigma$ ,  $\sigma_{\alpha}$ ,  $\sigma_{\beta}$ ,  $\sigma_{\alpha\beta}$

#### Option 4: Random Slope & Intercept Hierarchical Model

• We can similarly include a sub-model for the slope  $\beta$ .



# Does Adding Random Slopes Improve the Model?

- How do we determine whether adding the random slope term improves the model?
- 1. Graphical analysis and judgment:
  - the random slopes arguably yield an improved fit for Region 5.
  - but it looks like the random slope model might be overfitting Region 3.
  - Other regions a wash
- 2. Out of sample lift analysis.
- 3. Akaike information Criterion [AIC]: -2\*LL + 2\*d.f.
  - Random intercept AIC: 380.40
  - Random intercept & slope AIC: 380.64
  - Slight deterioration  $\rightarrow$  better to select the random intercept model.
- Random slopes don't help in this example, but it is a very powerful form of variable interaction to consider in one's modeling projects.

#### Parameter Comparison

• It is important to distinguish between each model's *parameters* and *hyperparameters*.

|        | α, β      |       | μ <sub>α</sub> , β, σ, ο | σα       | $\mu_{\alpha'} \ \mu_{\beta'} \ \sigma_{\prime} \ \sigma_{\alpha'} \ \sigma_{\alpha'} \ \sigma_{\alpha\beta}$ |       |  |  |
|--------|-----------|-------|--------------------------|----------|---------------------------------------------------------------------------------------------------------------|-------|--|--|
|        | SL        | R     | random i                 | ntercept | random intercept & slope                                                                                      |       |  |  |
| region | intercept | slope | intercept                | slope    | intercept                                                                                                     | slope |  |  |
| 1      | 2068.0    | 100.1 | 1911.3                   | 100.1    | 1999.3                                                                                                        | 70.3  |  |  |
| 2      | 2068.0    | 100.1 | 2087.8                   | 100.1    | 2070.2                                                                                                        | 111.2 |  |  |
| 3      | 2068.0    | 100.1 | 2236.1                   | 100.1    | 2137.0                                                                                                        | 137.4 |  |  |
| 4      | 2068.0    | 100.1 | 2267.3                   | 100.1    | 2159.6                                                                                                        | 133.2 |  |  |
| 5      | 2068.0    | 100.1 | 1980.3                   | 100.1    | 2033.1                                                                                                        | 79.3  |  |  |
| 6      | 2068.0    | 100.1 | 1932.3                   | 100.1    | 2008.9                                                                                                        | 73.8  |  |  |
| 7      | 2068.0    | 100.1 | 2066.8                   | 100.1    | 2066.3                                                                                                        | 101.2 |  |  |
| 8      | 2068.0    | 100.1 | 2061.8                   | 100.1    | 2069.5                                                                                                        | 94.1  |  |  |

- SLR:
- Random intercept:
- Random intercept & slope:

2 parameters and 2 hyperparameters11 parameters and 4 hyperparameters20 parameters and 6 hyperparameters

• How do the hyperparameters relate to the parameters?

#### Hierarchical Models and Credibility Theory

• Let's revisit the random intercept model.

$$PIF \sim N(\alpha_{j[i]} + \beta t, \sigma^2) \qquad \alpha_j \sim N(\mu_\alpha, \sigma_\alpha^2)$$

• This is how we calculate the random intercepts  $\{\alpha_1, \alpha_2, ..., \alpha_8\}$ :

$$\hat{\alpha}_{j} = Z_{j} \cdot (\overline{y}_{j} - \beta \overline{t}_{j}) + (1 - Z_{j}) \cdot \hat{\mu}_{\alpha} \quad \text{where} \quad Z_{j} = \frac{n_{j}}{n_{j} + \sigma^{2} / \sigma^{2}_{\alpha}}$$

- Therefore: each random intercept is a credibility-weighted average between:
  - The intercept for the pooled model (option 1)
  - The intercept for the region-specific model (option 2)

#### Hierarchical Models and Credibility Theory

 This makes precise the sense in which the random intercept model is a compromise between the pooled-data model (option 1) and the separate models for each region (option 2).

$$\hat{\alpha}_{j} = Z_{j} \cdot (\bar{y}_{j} - \beta \bar{t}_{j}) + (1 - Z_{j}) \cdot \hat{\mu}_{\alpha} \quad \text{where} \quad Z_{j} = \frac{n_{j}}{n_{j} + \sigma^{2} / \sigma_{\alpha}^{2}}$$

- As  $\sigma_a \rightarrow 0$ , the random intercept model  $\rightarrow$  option 1
- As  $\sigma_{\alpha} \rightarrow \infty$ , the random intercept model  $\rightarrow$  option 2
- Aside: what happens to the above formula if we remove the covariate *t* from our random intercept model?

#### Bühlmann's Credibility and Random Intercepts

• If we remove the time covariate (*t*) from the random intercepts model, we are left with a very familiar formula:

$$\hat{\alpha}_{j} = Z_{j} \cdot \overline{y}_{j} + (1 - Z_{j}) \cdot \hat{\mu}_{\alpha} \quad where \quad Z_{j} = \frac{n_{j}}{n_{j} + \sigma^{2} / \sigma^{2}_{\alpha}}$$

- Therefore: Bühlmann's credibility model is a specific instance of hierarchical models.
- The theory of hierarchical models gives one a practical way to integrate credibility theory into one's GLM modeling activities.

# Sample Applications

- Territorial ratemaking or including territory in a GLM analysis.
  - The large number of territories typically presents a problem.
- Vehicle symbol analysis
- WC or Bop business class analysis
- Repeated observations by policyholder
- Experience rating
- Loss reserving
  - Short introduction to follow

# Summing Up

- Hierarchical models are applicable when one's data comes grouped in one or more important ways.
- A group with a large number of levels might be regarded as a "massively categorical value"...
  - Building separate models by level or including one dummy variable per level is often impractical or unwise from a credibility point of view.
- Hierarchical models offer a compromise between complete pooling and separate models per level.
- This compromise captures the essential idea of credibility theory.
- Therefore hierarchical model enable a practical unification of two pillars of actuarial modeling:
  - Generalized Linear Models
  - Credibility theory

# Other thoughts

- The "credibility weighting" reflected in the calculation of the random effects represents a "shrinkage" of group-level parameters  $(\alpha_j, \beta_j)$  to their means  $(\mu_{\alpha}, \mu_{\beta})$ .
- The lower the "between variance" ( $\sigma_{\alpha}^2$ ) the greater amount of "shrinkage" or "pooling" there is.
- There is more shrinkage for groups with fewer observations (*n*).
- Panel data analysis is a type of hierarchical modeling → this is a natural framework for analyzing longitudinal datasets.
  - Multiple observations of the same policyholder
  - Loss reserving: loss development is multiple observations of the same AY claims

#### Parting Shot: Hierarchical Modeling for Loss Reserving

#### • A garden variety loss triangle (Dave Clark CAS Forum 2003):

| Cumulative Losses in 1000's |        |       |       |       |       |       |       |       |       |        |          |         |         |
|-----------------------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|--------|----------|---------|---------|
| AY                          | 12     | 24    | 36    | 48    | 60    | 72    | 84    | 96    | 108   | 120    | reported | est ult | reserve |
| 1991                        | 358    | 1,125 | 1,735 | 2,183 | 2,746 | 3,320 | 3,466 | 3,606 | 3,834 | 3,901  | 3,901    | 3,901   | 0       |
| 1992                        | 352    | 1,236 | 2,170 | 3,353 | 3,799 | 4,120 | 4,648 | 4,914 | 5,339 |        | 5,339    | 5,434   | 95      |
| 1993                        | 291    | 1,292 | 2,219 | 3,235 | 3,986 | 4,133 | 4,629 | 4,909 |       |        | 4,909    | 5,379   | 470     |
| 1994                        | 311    | 1,419 | 2,195 | 3,757 | 4,030 | 4,382 | 4,588 |       |       |        | 4,588    | 5,298   | 710     |
| 1995                        | 443    | 1,136 | 2,128 | 2,898 | 3,403 | 3,873 |       |       |       |        | 3,873    | 4,858   | 985     |
| 1996                        | 396    | 1,333 | 2,181 | 2,986 | 3,692 |       |       |       |       |        | 3,692    | 5,111   | 1,419   |
| 1997                        | 441    | 1,288 | 2,420 | 3,483 |       |       |       |       |       |        | 3,483    | 5,672   | 2,189   |
| 1998                        | 359    | 1,421 | 2,864 |       |       |       |       |       |       |        | 2,864    | 6,787   | 3,922   |
| 1999                        | 377    | 1,363 |       |       |       |       |       |       |       |        | 1,363    | 5,644   | 4,281   |
| 2000                        | 344    |       |       |       |       |       |       |       |       |        | 344      | 4,971   | 4,627   |
|                             |        |       |       |       |       |       |       |       |       |        |          |         |         |
| chain link                  | 3.491  | 1.747 | 1.455 | 1.176 | 1.104 | 1.086 | 1.054 | 1.077 | 1.018 | 1.000  | 34,358   | 53,055  | 18,697  |
| chain ldf                   | 14.451 | 4.140 | 2.369 | 1.628 | 1.384 | 1.254 | 1.155 | 1.096 | 1.018 | 1.000  |          |         |         |
| growth curve                | 6.9%   | 24.2% | 42.2% | 61.4% | 72.2% | 79.7% | 86.6% | 91.3% | 98.3% | 100.0% |          |         |         |

- We can regard this as a longitudinal dataset.
- Grouping dimension: Accident Year (AY)
- We can build a parsimonious non-linear model that uses random effects to allow the model parameters to vary by accident year.

#### **Growth Curves**

- Let's build a non-linear model of the loss triangle.
  - Are GLMs natural models for loss triangles?
- Uses growth curve to model the loss development process
  - 2-parameter curves
  - $\theta = scale$
  - $\omega = shape$
- Roughly speaking, we fit these curves to the LDFs and add random effects to θ and/or ω to allow the curves to vary by year.



#### Weibull and Loglogistic Growth Curves

# Hierarchical Growth Curve Model



#### Hierarchical Growth Curve Model



Frees, Edward (2006). <u>Longitudinal and Panel Data Analysis and</u> <u>Applications in the Social Sciences</u>. New York: Cambridge University Press.

Gelman, Andrew and Hill, Jennifer (2007). <u>Data Analysis Using</u> <u>Regression and Multilevel / Hierarchical Models</u>. New York: Cambridge University Press.

Guszcza, J. C. (2008). "Hierarchical Growth Curve Models for Loss Reserving". CAS *Forum*.

Pinheiro, J. C. and D. M. Bates. <u>Mixed-Effects Models in S and S-Plus</u>. New York: Springer-Verlag.