

Feature Selection Methods Data mining to pick predictive variables

Ravi Kumar ACAS, MAAA CAS Predictive Modeling Seminar San Diego October, 2008

Audit.Tax.Consulting.Financial Advisory.

Topics

- Overview
- Funnel Approach
 - Filters
 - Data Visualization
 - Wrappers
- Conclusion

Deloitte.

Overview

Definition of Feature Selection

Audit.Tax.Consulting.Financial Advisory.

Semantics: Data Mining vs Predictive Modeling

- Data Mining
 - KDD: <u>Knowledge Discovery in Databases</u>
 - EDA: <u>Exploratory Data Analysis</u>
 - Open-ended
 - "cast the net wide"
 - "Let the data speak for itself"
- Predictive Modeling
 - Build a model tailored to achieve a pre-specified goal
 - Build on:
 - Results of data mining
 - Domain expertise! (actuarial & insurance knowledge)

Actuarial science needs data mining...

... but data mining also needs actuarial science

Some Definitions

- Raw Variables
 - Variables available in the data
- Features
 - Variables constructed from the Raw variables
- Target Variable

- What we are trying to predict.
 - Profitability (loss ratio, LTV), Retention, ...
- Predictive Variables $\{X_1, X_2, \dots, X_N\}$
 - "Covariates" used to make predictions.
 - Policy Age, Credit, #vehicles....
- Predictive Model

$$Y = f(X_1, X_2, ..., X_N)$$

Casting the net wide

- Internal Data Sources
 - Policy Administration Systems
 - Claim Administration Systems
 - Stat Records
 - Billing Systems, Agency Systems, Loss Control data
- External Data Sources
 - Demographic data
 - Credit & Financial Information
 - MVR, Accident records . . .
- Create 100s of predictive variables from the above data sources
- Feature Selection: From the 100s of variables, pick the best combination of variables that explains the business best

Reason for Feature Selection: Curse of Dimensionality

• Using too many features reduces predictive performance

Feature Selection : Things to Ponder

- A Highly Predictive Variable
 - May not translate into a useful variable in a multivariate model
- A useless variable
 - Can become very useful when used with other variables
- Two highly correlated variables
 - May bring complementary qualities to a model

- Feature Selection problem is actually a model selection problem
 NP-hard problem (Cannot be solved in polynomial time O(n^c))
- Unifying theoretical framework is thus lacking
- Example: Selecting the best model from just 20 Variables
 - Number of models to consider: 20+(20*19/2) +(20*19*18/6)+ ...
 - More than **1 Million** variable combinations to choose from

Objectives of Feature Selection Methods

- Improve understanding of underlying business
 - Ease of interpretation/modeling

- Improve Efficiency
 - Measurement Costs
 - Storage Costs
 - Computation Costs
- Improve Prediction Performance of the predictors in the model
 - Improve goodness of fit
 - Reduce the number of variables in model
 - Defy the curse of dimensionality

Funnel Approach

Using the Funnel approach for Feature Selection

Audit.Tax.Consulting.Financial Advisory.

Feature Selection: Funnel Approach

Feature Selection: Funnel Approach

- Filters are methods that rank variables based on usefulness
- Used as a preprocessing step
- Uses fast algorithms
- Can be independent of Target Variable
- Designed to improve understanding of underlying business

Filters: How to get most out of filters?

- Simplify the target variable
 - Use a binary target variable? Examples:
 - High/Low Claim propensity
 - Zero/non-Zero claims
 - High/Low Severity
 - High/Low Profitability
- Focus on different subsets of data
 - Examples: New Business, Renewal business, Restaurant Class, Medium size Policies etc.
 - Data Sampling?
- Use many different Ranking techniques
 - K-S Statistics, Linear Models, Decision Trees, etc.
 - Different techniques have different strengths & weaknesses
- Mix in some random number based Placebo Variables

- For validating variable selection methodology Copyright © 2008 Deloitte Development LLC. All rights reserved.

Filters: Variable Selection Criteria

- A priori Business/Reliability knowledge
- Variable performance in various simple models
- Correlation Analysis

Filters: Test for Equality of Distribution

- Kolmogorov Smirnov Two-Sample Test
 - Non-parametric test
 - Tests if distribution of a variable is same across two samples

Divide data into two samples based on a Binary Target

(Example: NoClaim policies vs. Others)

- Compare the distribution of Xs in these two samples
- Rank the Xs based on K-S test

Focus on features with highest ranks

Copyright © 2008 Deloitte Development LLC. All rights reserved.

Filters: Test for Equality of Distribution

• Sample Rank of variables that influence "Zero claims"

Rank	_VAR_	_KSA_	
1	PolicysizeA	41.54114767	
2	CvgE	29.45908575	
3	FinC	25.15868948	
4	FinA	18.72773123	
5	PolicySizeB	16.65784683	
6	CvgA	16.09490114	
7	AgentA	14.53964193	
8	ZipD	14.45720589	
9	СvgВ	14.22495807	
10	PolicyYear	11.38747008	
11	ZipA	11.31822673	
12		10.93840937	
13		9.590276851	
14		8.138575461	
-		7.638420449	
-		7.621321237	
185	random6	0.338630276	
203	random7	0.075358981	
217	random8	0.072322166	

• Placebo variables are used to validate the method

Simple Models: Stepwise Regression

Pros

- Ease of use
- Does give some useful insights about the data
- Cons
 - Variables are picked based on Training data only
 - No penalty for picking too many variables

Few tricks

- Try different target variables
- Run it separately for various variable groups
- Include random variables (as X's) to understand if the method works for the problem
- Good idea to run Stepwise Regression multiple times, each time removing the top few variables from the previous run

• Sample Rank of variables that influence "Zero claims"

<u>Step</u>	Variable Entered	Variable Removed	Partial R-Square
1	PolSizeA		0.008
2	PolSizeB		0.007
3	FinB		0.005
4	AgentB		0.003
5		PolSizeB	
6	FinA		0.002
15	random3		0.001
16	ZipD		0.001

• Placebo variables are used to validate the method

Simple Models: Decision Trees

Pros

- Ease of use
- Non Parametric
- Not Sensitive to outliers in data
- Great way to explore/visualize the data
- Variables picked based on performance on Test data
- Can apply Penalty for picking too many variables
- Can give insights on variable interactions

Cons

- Does not pick linear relationships easily
- Unstable models in the presence of correlated variables
- Few tricks
 - Try different splitting rules (Gini, Entrpoy, Twoing etc)
 - Try different cost complexities for pruning the tree

Filters: Decision Trees

• Sample Variable Importance report from CART

Variable	<u>Score</u>
PolSizeA	100.00
PolSizeB	66.34
CvgA	22.67
FinA	15.90
FinC	5.67
random3	0.03

Feature Selection: Funnel Approach

Data Visualization

Visualization is important

- to take care of non-linear relationship with target
 - Example: add Log(X), X² or other polynomial terms
- to take care of extreme values
- to take care of missing values
- to create indicator variables
- to take care of correlation with other variables
- to identify interaction terms

Useful Tools

- Profile Plots, Scatter Plots
- Analysis in MARS
- Correlation & Principal Component Analysis

Data Visualization: Non linear relationships

Consider adding a squared term for variable polSizeE

Data Visualization: Indicator Variables

Consider creating indicator variables for finA=5 and for finA=6

Data Visualization: Correlations

Correlation Matrix

Consider constructing Principal Components for highly correlated variables

Copyright © 2008 Deloitte Development LLC. All rights reserved.

Feature Selection: Funnel Approach

- Evaluate subset of variables based on predictive power
 Focus is on Variable Selection
- Independent of the statistical techniques used in modeling
 Try Multiple Learning Techniques
- Can also be embedded into the modeling process
- Can be Computer intensive
 - Need to start with manageable number of variables

Wrappers: Machine Learning Techniques

Linear Models with Cross Validation

- Data is randomly divided in to K groups
- Score one group based on model fitted from other K-1 groups
- Repeat this K times, once for each group
- Variables are chosen based on performance of model on test

Neural Networks

- Non-Linear statistical modeling tool
- A good tool to understand variable importance
- Built in Train-Test Concept
- Variable importance is one of the outputs from the model

Boosted Decision Trees

- Many trees based on different error weighting schemes
 - harder to classify points are given a boost
- Majority vote over a number of decision trees
- Produces very stable results
- Available in CART and ROOT packages

RuleFit or (M) Rule Based Ensembles

- Combines Regression and Classification models

$$Y = a_0 + a_1 f_1(X) + a_2 f_2(X) + ... + a_M f_M(X)$$

- Easy to explain
- Available in R and ROOT

Wrappers: Variable Selection Criteria

- 1. Performance
- 2. Consistency between Train and Test

Putting It All Together

- There is no perfect algorithm for Feature Selection problem
- Keep it Simple Principle of Parsimony
- Visualizing the data is very important
- Embed Validation into your methodology
- Work with subsets of data for additional insights

- Documentation on ROOT
 - www.root.cern.ch
- Documentation on R
 - www.r-project.org
- Documentation on SAS
 - sas.com