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In Classical Statistics, we In Classical Statistics, we 
assume that there is a fixed assume that there is a fixed 
““populationpopulation”” from which we from which we 
are sampling.are sampling.

The world is simple, like an urn The world is simple, like an urn 
with an unknown number of with an unknown number of 
red and black balls.red and black balls.

For Reserving:  The historical loss development For Reserving:  The historical loss development 
data is viewed as a sample from a data is viewed as a sample from a ““populationpopulation””
of possible outcomes.of possible outcomes.
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Key idea:Key idea: A function of random variables is also a A function of random variables is also a 
random variable.random variable.

For example, given a sample = XFor example, given a sample = X11 XX22 XX33 …… XXNN

The sample mean is also a random variable with an The sample mean is also a random variable with an 
expected value and variance to be estimated.expected value and variance to be estimated.

Similarly, our estimate of the future payments is a Similarly, our estimate of the future payments is a 
function of the payments to date by year.  This is function of the payments to date by year.  This is 
also a random variable with a mean and variance.also a random variable with a mean and variance.
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Model Method Reserve

Mathematical Mathematical 
description of description of 
the lossthe loss--
generating generating 
phenomenonphenomenon

The algorithm The algorithm 
for using the for using the 
data to data to 
calculate an calculate an 
estimateestimate

The $ amount The $ amount 
actually actually 
carried in the carried in the 
financial financial 
statementstatement
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We will look at two models.We will look at two models.
Additive OverAdditive Over--Dispersed Poisson (ODP)Dispersed Poisson (ODP)
Multiplicative Chainladder (Mack)Multiplicative Chainladder (Mack)

Both of these models lead to the Both of these models lead to the samesame
chainladder method to estimate ultimate losses, chainladder method to estimate ultimate losses, 
but they include different variability assumptions but they include different variability assumptions 
and so have and so have differentdifferent estimates of variability.estimates of variability.

See Venter (1998) for ideas on tests to compare models.See Venter (1998) for ideas on tests to compare models.
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Additive OverAdditive Over--Dispersed Poisson ModelDispersed Poisson Model
(England & Verrall)(England & Verrall)

Including BootstrappingIncluding Bootstrapping
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The Bootstrapping Method:The Bootstrapping Method:

““BootstrappingBootstrapping”” is a method for calculating is a method for calculating 
the standard error of an estimate.the standard error of an estimate.

First we need to describe a model.First we need to describe a model.
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Incremental Paid Loss Model:Incremental Paid Loss Model:
Expected Loss based on accident year (y) and Expected Loss based on accident year (y) and 
development period (d) factors:  development period (d) factors:  ααyy ×× ββdd

Incremental paid losses Incremental paid losses CCy,dy,d are independentare independent
Constant Variance/Mean Ratio  Constant Variance/Mean Ratio  σσ22
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This can be modeled as an OverThis can be modeled as an Over--Dispersed Dispersed 
Poisson (ODP) distributionPoisson (ODP) distribution
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( ) dydy, βαCE ⋅=

( ) ( )dy,
2

dy, CEσCVar ⋅=
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Model  ODP

rchainladde    βandα for MLE dy =ˆˆ
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The OverThe Over--Dispersed Poisson (ODP) model is Dispersed Poisson (ODP) model is 
attractive because:attractive because:
The maximum likelihood estimate (MLE) of the The maximum likelihood estimate (MLE) of the 
expected values equal the chainexpected values equal the chain--ladder ladder 
estimates.estimates.
We can estimate the process variance as a We can estimate the process variance as a 
simple multiple of the estimated reserve.simple multiple of the estimated reserve.
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But what about the uncertainty in the estimate of But what about the uncertainty in the estimate of 
the mean (the the mean (the ““parameter varianceparameter variance””)?)?
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The Parameter Variance component can be The Parameter Variance component can be 
evaluated in either of two ways:evaluated in either of two ways:

Analytically:  Using the Analytically:  Using the ““delta methoddelta method””
Based on inverting the matrix of second derivatives Based on inverting the matrix of second derivatives 
of the logof the log--likelihood functionlikelihood function

Simulation:  Using BootstrappingSimulation:  Using Bootstrapping
Based on creating many Based on creating many ““what ifwhat if”” triangles and triangles and 
seeing how the reserve estimates from this differseeing how the reserve estimates from this differ
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Steps in Bootstrapping:Steps in Bootstrapping:
Calculate Chainladder UltimatesCalculate Chainladder Ultimates
Calculate Calculate ““ExpectedExpected”” incremental triangleincremental triangle
Calculate residuals  =  (ACalculate residuals  =  (A--E)/(E)/(σσ··EE½½))
Generate a pseudoGenerate a pseudo--triangle from retriangle from re--sampled sampled 
residualsresiduals
Calculate Chainladder Ultimates from pseudoCalculate Chainladder Ultimates from pseudo--
triangletriangle
Repeat, Repeat, RepeatRepeat, Repeat, Repeat
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Two Types of Bootstraps:Two Types of Bootstraps:

NonparametricNonparametric
Uses empirical residualsUses empirical residuals
Does not require a distributional assumptionDoes not require a distributional assumption
Works best for large samples (at least 100 points)Works best for large samples (at least 100 points)

ParametricParametric
Uses simulations from a theoretical distribution Uses simulations from a theoretical distribution 
(e.g., ODP or Normal) with mean and variance (e.g., ODP or Normal) with mean and variance 
parameters selected from the original dataparameters selected from the original data
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Multiplicative / Autocorrelation ModelMultiplicative / Autocorrelation Model
(Mack)(Mack)
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The DistributionThe Distribution--Free calculation introduced by Free calculation introduced by 
Thomas Mack in 1993 is an alternative model Thomas Mack in 1993 is an alternative model 
that is also consistent with the chainladder that is also consistent with the chainladder 
method.method.

Here we do not assume independence of Here we do not assume independence of 
incremental payments.  Instead, we assume incremental payments.  Instead, we assume 
that each payment is correlated with the earlier that each payment is correlated with the earlier 
payments for that accident year.  It is the agepayments for that accident year.  It is the age--
toto--age factors that are assumed to be age factors that are assumed to be 
independent.independent.
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The Mack model is attractive because:The Mack model is attractive because:
The Best Linear Unbiased Estimator (The Best Linear Unbiased Estimator (““BLUEBLUE””) ) 
for the reserves equals the chainfor the reserves equals the chain--ladder ladder 
estimates.estimates.

See Murphy 1994 for further details.See Murphy 1994 for further details.

The model is robust in handling [some] The model is robust in handling [some] 
negative development increments.negative development increments.
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( ) 1dy,1d-1dy,dy, DλD|DE −− ⋅=

( ) 1dy,
2

1d-1dy,dy, DσD|DVar −− ⋅=
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Model  Mack

dy,y,2y,1dy, CCCD  Let +++= L
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( ) 1dy,1d-1dy,dy, DλD|DE −− ⋅=

( ) 2dy,2d1d2dy,dy, DλλD|DE −−−− ⋅⋅=

factor age"-to-age" an isλ  that Note
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Model  Mack

( ) 3dy,3d2d1d3dy,dy, DλλλD|DE −−−−− ⋅⋅⋅=
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( ) 1dy,
2

1d-1dy,dy, DσD|DVar −− ⋅=

( ) ( )2dy,1dy,1d-1dy,
2

1d2dy,dy, D|DλVarDσD|DVar −−−−− ⋅+⋅=

yrecursivel stated be also can Variance
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Model  Mack
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The variance multiplier in the Mack model is The variance multiplier in the Mack model is 
similar to what we saw for the ODP.  However, similar to what we saw for the ODP.  However, 
he defines a new sigma (he defines a new sigma (σσ) for each ) for each 
development age (d).development age (d).
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The Parameter Variance component can be The Parameter Variance component can be 
evaluated in either of two ways:evaluated in either of two ways:

Analytically:  Using the formulas given in Analytically:  Using the formulas given in 
MackMack’’s papers paper

This is not the This is not the ““delta methoddelta method”” from MLE, since Mack from MLE, since Mack 
does not explicitly make a distributional assumptiondoes not explicitly make a distributional assumption

Simulation:  Using BootstrappingSimulation:  Using Bootstrapping
Based on creating many Based on creating many ““what ifwhat if”” triangles and triangles and 
seeing how the reserve estimates from this differseeing how the reserve estimates from this differ
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Limitations & Caveats:Limitations & Caveats:
Assumptions on independence and identical Assumptions on independence and identical 
distributions (iid) are weak distributions (iid) are weak –– an unchanging an unchanging 
world is assumed!world is assumed!
Concern of overConcern of over--parameterizationparameterization
Models handle some zero or negative values, but Models handle some zero or negative values, but 
do not work for very sparse datado not work for very sparse data
Difficulty in variance of Difficulty in variance of ““tailtail”” beyond trianglebeyond triangle
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An Unchanging World:An Unchanging World:

Assumes that the future payments will be from a Assumes that the future payments will be from a 
distribution identical to the past.distribution identical to the past.
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OverOver--Parameterization:Parameterization:

12341234

9 Parameters9 Parameters
+9 +9 ““sigmassigmas”” σσdd

19 Parameters19 Parameters
+1 +1 ““sigmasigma”” σσ

10 Years10 Years
45 Points45 Points

10 Years10 Years
55 Points55 Points

MackMackE&V ODPE&V ODP
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Tail Factor Extrapolation:Tail Factor Extrapolation:

Select a tail factor and include it as Select a tail factor and include it as ““quasiquasi--datadata””
as though it were part of the original triangleas though it were part of the original triangle

This ignores the additional parameter variance This ignores the additional parameter variance 
associated with the selectionassociated with the selection

Extrapolate a tailExtrapolate a tail--factor from the trianglefactor from the triangle
Need some formula for extrapolated valueNeed some formula for extrapolated value
For bootstrapping, this is done at each iterationFor bootstrapping, this is done at each iteration
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References (Bootstrap):References (Bootstrap):

““Analytic and bootstrap estimates of prediction errors in Analytic and bootstrap estimates of prediction errors in 
claims reserving,claims reserving,”” Insurance: Mathematics and Insurance: Mathematics and 
Economics 25 (1999) Economics 25 (1999) –– Peter England & Richard Verrall.Peter England & Richard Verrall.

““Addendum to Addendum to ‘‘Analytic and bootstrap estimates of Analytic and bootstrap estimates of 
prediction errors in claims reservingprediction errors in claims reserving’’,,”” Insurance: Insurance: 
Mathematics and Economics 31 (2002) Mathematics and Economics 31 (2002) –– Peter England.Peter England.

““Stochastic Claims Reserving in General Insurance,Stochastic Claims Reserving in General Insurance,”” B.A.J. B.A.J. 
8.III (2002) 8.III (2002) –– Peter England & Richard Verrall.Peter England & Richard Verrall.
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References (Mack):References (Mack):

““A Simple Parametric Model for Rating Automobile A Simple Parametric Model for Rating Automobile 
Insurance or Estimating IBNR Claims Reserves,Insurance or Estimating IBNR Claims Reserves,”” ASTIN ASTIN 
Bulletin, Vol. 21, No. 1, 1991 Bulletin, Vol. 21, No. 1, 1991 –– Thomas Mack.Thomas Mack.

““DistributionDistribution--Free Calculation of the Standard Error of Free Calculation of the Standard Error of 
Chain Ladder Reserve Estimates,Chain Ladder Reserve Estimates,”” ASTIN Bulletin, Vol. ASTIN Bulletin, Vol. 
23, No. 2, 1993 23, No. 2, 1993 –– Thomas Mack.Thomas Mack.

““The Standard Error of Chain Ladder Reserve Estimates: The Standard Error of Chain Ladder Reserve Estimates: 
Recursive Calculation and Inclusion of a Tail Factor,Recursive Calculation and Inclusion of a Tail Factor,””
ASTIN Bulletin, Vol. 29, No. 2, 1999 ASTIN Bulletin, Vol. 29, No. 2, 1999 –– Thomas Mack.Thomas Mack.
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References (Other):References (Other):

““An Introduction to the Bootstrap,An Introduction to the Bootstrap,”” Chapman & Hall 1993 Chapman & Hall 1993 ––
B. Efron & R. Tibshirani.B. Efron & R. Tibshirani.

““Unbiased Loss Development Factors,Unbiased Loss Development Factors,”” Proceedings of the Proceedings of the 
CAS, 1994 CAS, 1994 –– Daniel Murphy.Daniel Murphy.

““Testing the Assumptions of AgeTesting the Assumptions of Age--toto--Age Factors,Age Factors,””
Proceedings of the CAS, 1998 Proceedings of the CAS, 1998 –– Gary Venter.Gary Venter.
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Comparison of Standard Errors for Two Reserving Models
Completing the Triangle

ODP - E&V
AY Diagonal Reserve Process to Res Parameter to Res Prediction to Res

2 5,339,085 94,634 70,554 74.6% 84,522 89.3% 110,099 116.3%
3 4,909,315 469,511 157,153 33.5% 148,248 31.6% 216,042 46.0%
4 4,588,268 709,638 193,204 27.2% 175,287 24.7% 260,871 36.8%
5 3,873,311 984,889 227,610 23.1% 200,836 20.4% 303,549 30.8%
6 3,691,712 1,419,459 273,250 19.3% 256,843 18.1% 375,012 26.4%
7 3,483,130 2,177,641 338,448 15.5% 361,732 16.6% 495,376 22.7%
8 2,864,498 3,920,301 454,107 11.6% 646,389 16.5% 789,957 20.2%
9 1,363,294 4,278,972 474,426 11.1% 932,791 21.8% 1,046,508 24.5%
10 344,014 4,625,811 493,279 10.7% 1,917,664 41.5% 1,980,091 42.8%

Total 30,456,627 18,680,856 991,281 5.3% 2,773,841 14.8% 2,945,646 15.8%

"Distribution Free" Chainladder - Mack
AY Diagonal Reserve Process to Res Parameter to Res Prediction to Res

2 5,339,085 94,634 48,832 51.6% 57,628 60.9% 75,535 79.8%
3 4,909,315 469,511 90,524 19.3% 81,338 17.3% 121,699 25.9%
4 4,588,268 709,638 102,622 14.5% 85,464 12.0% 133,549 18.8%
5 3,873,311 984,889 227,880 23.1% 128,078 13.0% 261,406 26.5%
6 3,691,712 1,419,459 366,582 25.8% 185,867 13.1% 411,010 29.0%
7 3,483,130 2,177,641 500,202 23.0% 248,023 11.4% 558,317 25.6%
8 2,864,498 3,920,301 785,741 20.0% 385,759 9.8% 875,328 22.3%
9 1,363,294 4,278,972 895,570 20.9% 375,893 8.8% 971,258 22.7%
10 344,014 4,625,811 1,284,882 27.8% 455,270 9.8% 1,363,155 29.5%

Total 30,456,627 18,680,856 1,878,292 10.1% 1,568,532 8.4% 2,447,095 13.1%



Comparison of Standard Errors for Two Reserving Models
Next CY Diagonal

ODP - E&V
AY Diagonal Next CY Process to Res Parameter to Res Prediction to Res

2 5,339,085 94,634 70,554 74.6% 84,522 89.3% 110,099 116.3%
3 4,909,315 375,833 140,604 37.4% 117,373 31.2% 183,155 48.7%
4 4,588,268 247,190 114,029 46.1% 75,063 30.4% 136,517 55.2%
5 3,873,311 334,148 132,577 39.7% 78,431 23.5% 154,039 46.1%
6 3,691,712 383,287 141,991 37.0% 81,651 21.3% 163,793 42.7%
7 3,483,130 605,548 178,473 29.5% 112,238 18.5% 210,832 34.8%
8 2,864,498 1,310,258 262,529 20.0% 225,048 17.2% 345,786 26.4%
9 1,363,294 1,018,834 231,500 22.7% 229,139 22.5% 325,725 32.0%
10 344,014 856,804 212,295 24.8% 358,489 41.8% 416,633 48.6%

Total 30,456,627 5,226,536 524,331 10.0% 532,575 10.2% 747,368 14.3%

"Distribution Free" Chainladder - Mack
AY Diagonal Next CY Process to Res Parameter to Res Prediction to Res

2 5,339,085 94,634 48,832 51.6% 57,628 60.9% 75,535 79.8%
3 4,909,315 375,833 75,052 20.0% 56,970 15.2% 94,225 25.1%
4 4,588,268 247,190 45,268 18.3% 27,163 11.0% 52,792 21.4%
5 3,873,311 334,148 178,062 53.3% 87,733 26.3% 198,502 59.4%
6 3,691,712 383,287 225,149 58.7% 102,068 26.6% 247,204 64.5%
7 3,483,130 605,548 229,965 38.0% 99,925 16.5% 250,737 41.4%
8 2,864,498 1,310,258 346,712 26.5% 151,271 11.5% 378,275 28.9%
9 1,363,294 1,018,834 226,818 22.3% 82,715 8.1% 241,429 23.7%
10 344,014 856,804 234,816 27.4% 75,503 8.8% 246,656 28.8%

Total 30,456,627 5,226,536 610,035 11.7% 266,139 5.1% 665,562 12.7%



Some Comments on the Mack Variance Formulas 
Dave Clark  -  May 2006 

 
 
Recursive definition for expected value: ( ) ( )1,11,| −−− ⋅= kikkiik DEDDE λ  
 kiD ,    = cumulative loss for AY i  at development period k  
 1−kλ   = weighted-average age-to-age factor from development period 1−k  to k  
 
The “process variance” is likewise modeled in a recursive form.  The variance increases 
when more development periods are included. 
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This expansion can continue for any number of development periods “n.” 
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The reserve (considering ultimate = age N ) is given as: ( ) ( ) iNiNii DDERE −+−= 1,,   
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And then the mean squared error (MSE), including Parameter Variance is given as below: 
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Think of this as analogous to:      
n

2
2 ˆˆ σσ +≈   

 
We remember that  kλ̂  is the dollar-weighted average age-to-age factor, so the additional 
term included for parameter variance is the total dollars in the denominator of the 
estimator of each age-to-age factor kλ̂ .   This represents the variance due to the error in 
the “sample mean” age-to-age factor. 
 
A modest re-arrangement of this expression is also useful. 
If we let 11 −+⋅= NkkkLDF λλλ L , such that ( ) kikNi DLDFDE ,, ⋅= , then we can re-write 
the mean square error (MSE) expression as follows: 
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This form shows that “process variance” is proportional to the loss dollars in the accident 
year, implying that the CV decreases for years with greater volume.  By contrast, the 
“parameter variance” is proportional to the loss dollars squared, implying that the CV 
does not decrease even when loss volume increases. 
 
When we want to calculate the covariance between the reserves for any two accident 
years (say, i  and j ), the parameter variance terms becomes: 
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The MSE for the reserves overall includes the sum of the matrix of covariances terms. 


