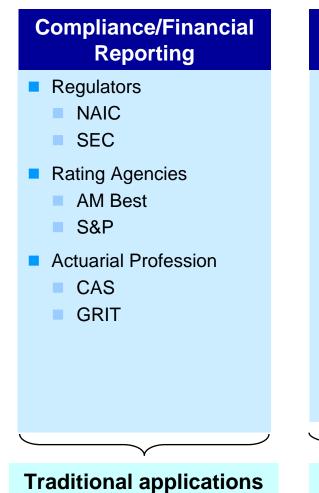


# **Considerations Regarding Standards of Materiality in estimates of Outstanding Liabilities**

# CAS Spring Meeting 2008 Quebec City

June 17, 2008


Manolis Bardis, FCAS, MAAA

# Agenda

- Why analyze reserve uncertainty
- Purpose of analysis
- Practical illustration of the theory
- Detailed illustration of the research
- Results and conclusions

Why analyze reserve uncertainty

# **Evaluating loss reserve uncertainty has many purposes**



#### Financial/Capital Management

- Anticipate potential for "bad news"
  - Capital managementEvaluate "needed" surplus
- Allocation of capital
  - Reserve risk by line and branch
- Reinsurance terms
  - Consider impact over range of estimates

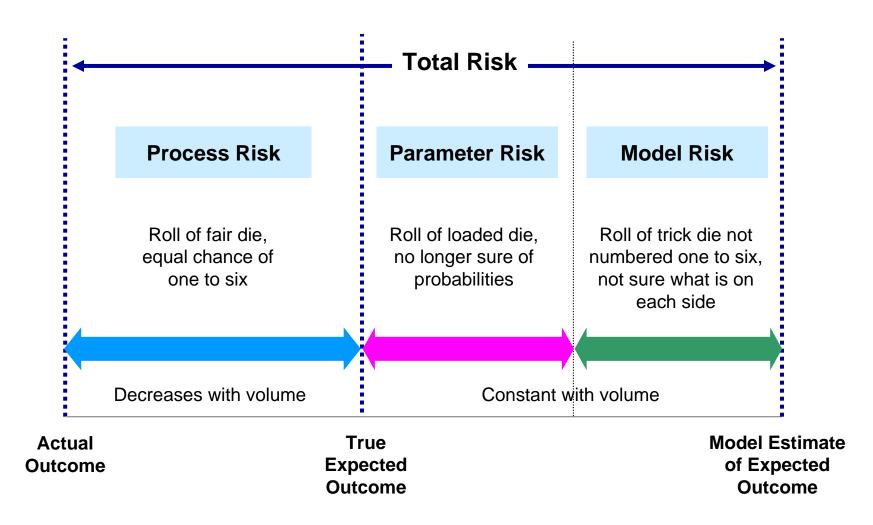
#### Operational/Strategic Excellence

- Monitor results
  - Early warning system
  - What deviations from plan are significant?
- Growth strategies
- Evaluate investments
  - Range of outcomes

#### Value-added applications

## Loss generation follows a "random" process

- The claim generation and emergence is a random process
  - Accidents happen
  - Claims are reported
  - Case reserves are set
  - Payments are made
- Stochastic reserving models formally recognize that claim generation and emergence is a random process


**Purpose of analysis** 

# **Purpose of our intellectual capital efforts**

Our research focused on the uncertainty of the claim liabilities. It tries to tackle two issues that arise from that uncertainty:

- By what amount must two estimates of claim liabilities differ to be considered materially different from each other?
  - Reserve adequacy in actuarial opinions
- What is the magnitude of the reasonable probable total deviation (adverse or favorable) in actual claim liabilities from the current estimate of expected claim liabilities?
  - Solvency/Financial impact on the company
- Materiality in the context of actuarial opinions is slightly different
  - Relates to adverse claim liability deviation that would significantly affect the viability of a company

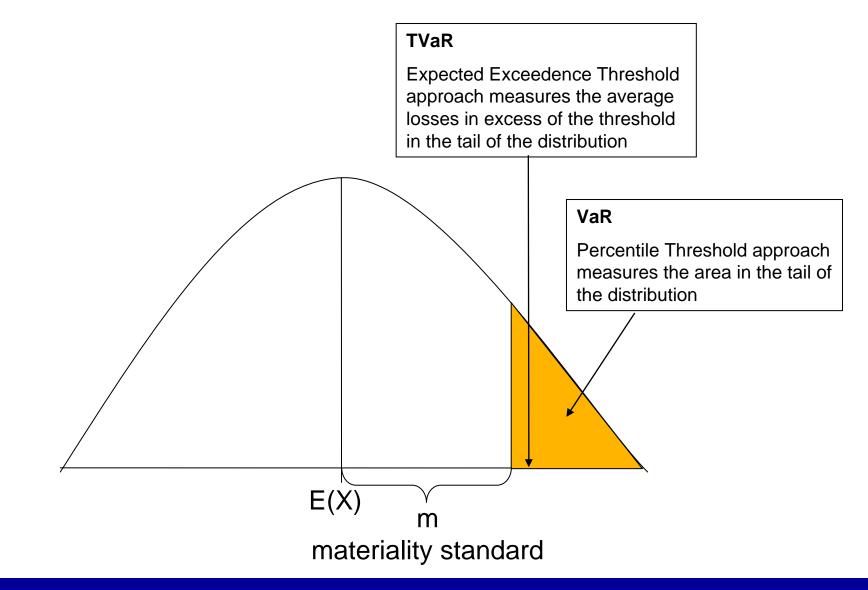
Several distinct types of risks are inherent in the measurement of claim liabilities — the actuary and the audience need to be clear about which are relevant to a particular application



# Three different perspectives of materiality

- Statistical perspective: relates to the uncertainty associated with the shape and parameters of the unknown claim liability distribution
- Financial perspective: relates to the question whether the users of the financial statements will draw different conclusions if the reported reserve figures were different
  - Balance Sheet and Income statement perspective

Solvency perspective: links the uncertainty of the claim liabilities to the capital and claims-paying capacity of the company


# Two appropriate ranges are measured

- Range of Reasonable Estimates: range within which alternative estimates of the expected claim liabilities would deem to be immaterial
  - Difference of two reserve estimates is not statistically significant
  - Difference of two reserve estimates is not **financially** significant
    - Only parameter and model risk are relevant here
    - Produces Estimation materiality standards
- Range of Reasonable Probable Outcomes: range within which the alternative actual claim liabilities outcomes are expected to fall with reasonable confidence
  - Outcomes outside the range are possible but not probable
  - Outcomes within the range will not threaten the solvency of a well capitalized company
    - All types of risk are relevant here
    - Produces outcome materiality standards

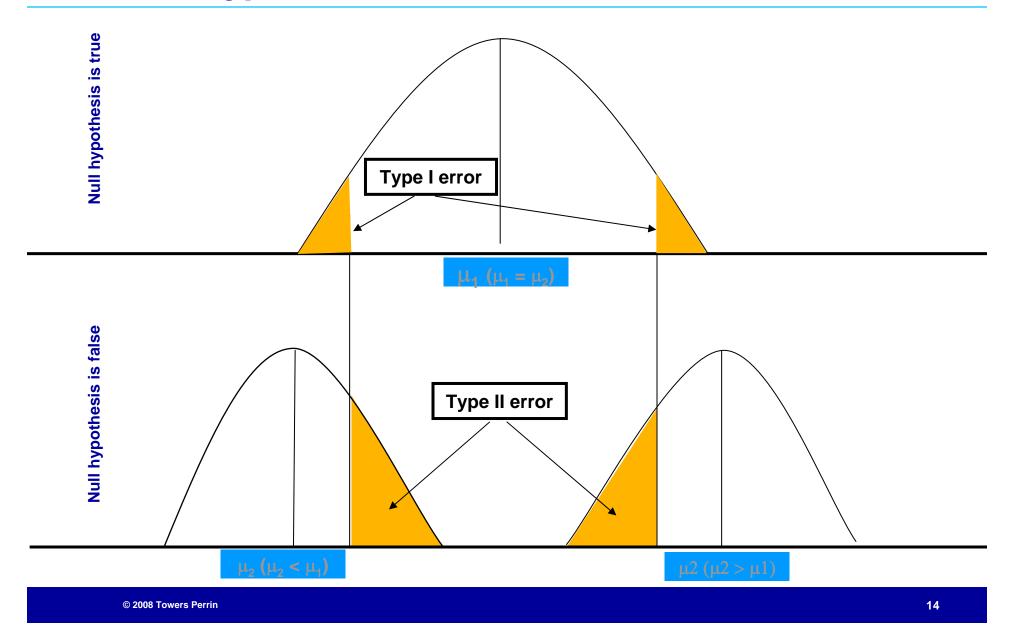
# **Measurement of standards of materiality**

- Calculate the appropriate claim liability distributions
- Appropriate materiality standards can be calculated based on the selection of a significance level threshold
- Thresholds are based on two measures of risk:
  - Percentile threshold approach (VaR): measures the probability of an outcome being worse than a given monetary threshold
  - Expected exceedence threshold approach (TVaR): measures the expected value of the amount in excess of a given monetary threshold, i.e., the expected material adverse deviation
- The TVaR approach assumes higher risk compared to the VaR approach since it is influenced by the outcomes of remote values

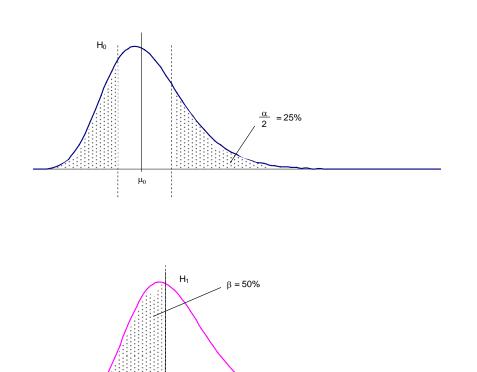
#### Two measures of risk: Percentile Threshold (VaR) Expected Exceedence Threshold (TVaR)



# We employ the framework of a statistical hypothesis testing


- *H<sub>0</sub>* (*Null Hypothesis*): the two estimates of claim liabilities are not materially different from each other, i.e.  $\mu_0 = \mu_1$
- $H_1$  (Alternative Hypothesis): the two estimates of claim liabilities are materially different from each other, i.e.  $\mu_0 \neq \mu_1$
- The resulting standard of materiality m can be interpreted as a function of two primary variables among others:

 $m = f(\sigma, r);$  where


 $\sigma$ : the implied volatility of the claim liability distribution in question

- **r**: the significance level threshold (the type I error under the null hypothesis approach). Facts:
- m is directly proportional to σ
  - There is a greater uncertainty associated with the claim liability estimate
  - A more volatile line will require a larger surplus allocation
- m is inversely proportional to r
  - A higher significance level implies a higher level of conservatism

# **Null hypothesis framework**



#### In the context of reserve opinions, we need to know when one estimate of the liabilities is significantly different from another



- Distribution reflects the inherent uncertainty associated with any estimate of ultimate claim liabilities
- Hypothesis testing focuses on the probability of drawing the wrong conclusion
  - α = the probability of selecting the alternative estimate when the original estimate is correct
  - β = the probability of staying with the original estimate when the alternative estimate is correct
- Range of Insignificance  $\alpha = \beta = 50\%$
- Significance levels defined in terms of lower value of α
- In this illustration, there is significant overlap between management's view and the external actuary's view of the underlying distribution
- Differences in estimates of ultimate liabilities are likely to represent "noise"

 $\mu_1$ 

# **Other examples yield different scenarios:**

| Hierarchy of Difference                                                                                                                | Test<br>Result        | Opinion<br>Implications                                       |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------|
| Insignificant In the acceptance range defined by $\alpha = .50$                                                                        | Accept H <sub>0</sub> | "Reasonable"<br>opinion; No<br>qualification or<br>disclosure |
| Potentially Significant<br>Outside the acceptance range defined by $\alpha$ = .50<br>In the acceptance range defined by $\alpha$ = .30 | Accept H <sub>0</sub> | "Reasonable"<br>opinion; Disclosure                           |
| Significant In the rejection range defined by $\alpha = .30$                                                                           | Reject H <sub>0</sub> | Adverse opinion                                               |

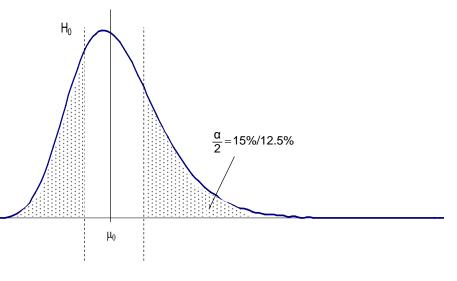
 $\boldsymbol{\alpha}$  for illustrative purposes only

# A practical illustration of the theory

# A practical illustration of the theory

- Company X carried reserve = \$395 M
- Opining Actuary's mean indicated = \$390 Million as follows:

| Line of Business           | Company X<br>Carried Reserve<br>(\$Millions) | Opining Actuary's<br>Indicated Reserve<br>(\$Millions) |
|----------------------------|----------------------------------------------|--------------------------------------------------------|
| Personal Auto Liability    | \$65                                         | \$55                                                   |
| Workers Compensation       | \$175                                        | \$185                                                  |
| Other Liability-Occurrence | \$155                                        | \$150                                                  |
| Total                      | \$395                                        | \$390                                                  |


### **Distribution around the mean**

We employ the Mack stochastic reserving method on Company X line of business triangles to come up with the following CVs:

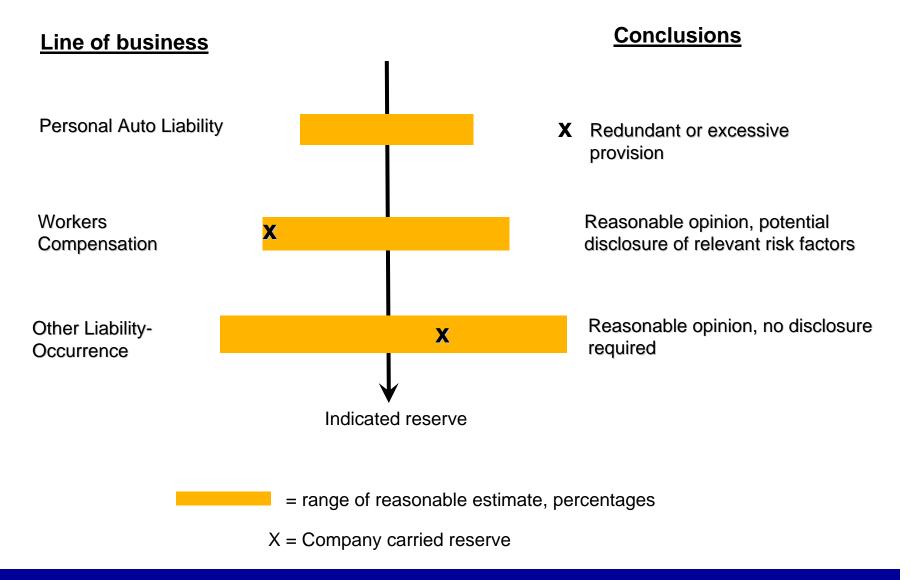
| Line of Business           | CV (Parameter Risk) |
|----------------------------|---------------------|
| Personal Auto Liability    | 4.0%                |
| Workers Compensation       | 5.5%                |
| Other Liability-Occurrence | 8.0%                |

#### **Determination of ranges – theory**

- Select ranges by line of business assuming lognormal distribution with calculated CV and mean equal to Opining Actuary's indicated using the VaR approach:
- For each line of business:
  - Range of reasonable estimates can be calculated corresponding to  $\alpha = 0.30$  two-tail test
  - Range of probable outcomes can be calculated corresponding to  $\alpha = 0.25$  two-tail test



#### **Determination of ranges – parameters**


- To calculate ranges of reasonable estimates we need to know
  - CV, a measure of the uncertainty of the claim liability estimates
  - $\blacksquare$   $\alpha$ , the benchmark significance level

|                                 |                | Range of<br>Insignificance<br>$(\alpha = .50)$ |       | Range of Reasonable<br>Estimate<br>$(\alpha = .30)$ |       |
|---------------------------------|----------------|------------------------------------------------|-------|-----------------------------------------------------|-------|
|                                 | Selected<br>CV | Lower                                          | Upper | Lower                                               | Upper |
| Personal Auto Liability         | 4.0%           | -2.7%                                          | 2.7%  | -4.1%                                               | 4.1%  |
| Workers Comp                    | 5.5%           | -3.8%                                          | 3.8%  | -5.7%                                               | 5.7%  |
| Other Liability –<br>Occurrence | 8.0%           | -5.5%                                          | 5.6%  | -8.2%                                               | 8.3%  |

# **Determination of ranges – results**

|                                 | Indicated<br>Reserve | Insigni | Range of<br>nsignificance<br>$(\alpha = .30)$ Range of<br>Reasonable<br> |       | onable<br>mate | Carried<br>Reserve |
|---------------------------------|----------------------|---------|--------------------------------------------------------------------------|-------|----------------|--------------------|
|                                 |                      | Lower   | Upper                                                                    | Lower | Upper          |                    |
| Personal Auto Liability         | \$55                 | \$54    | \$56                                                                     | \$53  | \$57           | \$65               |
| Workers Comp                    | \$185                | \$178   | \$192                                                                    | \$174 | \$196          | \$175              |
| Other Liability –<br>Occurrence | \$150                | \$142   | \$158                                                                    | \$138 | \$162          | \$155              |

# Comparison of differences between carried and indicated amounts with estimated materiality amounts



# A detailed illustration of the research

# **Steps in the methodology**

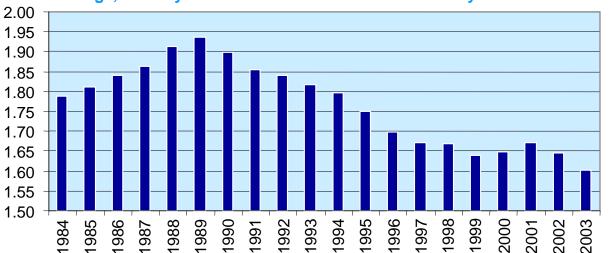
### Data

- Estimate claim liability distributions
- Select significance thresholds
- Calculate materiality standards for various measures of risk
- Aggregate various lines together

# Step 1: Data

- The AM Best database was employed in our analysis
  - Schedule P (for premium, losses)
  - Five-Year Historical data (for surplus)
- Four lines of business were analyzed:
  - PAL: Personal Auto Liability
    - short tail line, stable development
  - HO: Homeowners
    - short tail line, less stable development
  - WC: Workers Compensation
    - long tail line, stable development
  - OLO: Other Liability-Occurrence
    - long tail line, non stable development
- Analysis happened at the legal entity level
  - Figures were adjusted for pooling arrangements
- Insurers were classified into Small/Medium/Large based on net earned premium volume

# **Step 2: Estimate claim liability distributions**


- The claim liability distributions were calculated based on two stochastic methods:
  - Mack method:
    - the method generates the first two moments of the claim liability distribution
    - Assumptions are needed for the form of the distribution and the triangle's tail
  - Bootstrapping method:
    - Produces an empirical distribution of the claim liabilities
    - Inverse power curves are fitted in the tail
- Both stochastic methods are employing paid loss development data
- Both methods are not responding well to reported losses where negative loss development is prevalent

# **Stationarity: one notable limitation of both stochastic reserving methods**

- Both methods assume a stationary process, i.e. they assume the absence of any influences other than the loss generating process:
- Realistically triangle development data is hardly stationary due to:
  - Exogenous factors: non-company specific like economic or social inflation
  - Endogenous factors: company-specific like claim settlement and changes in case reserve adequacy
- Stochastic methods are overstating the volatility of the underlying loss generating process
  - Hindcast testing results, based on empirical results, support the assertion of overstatement

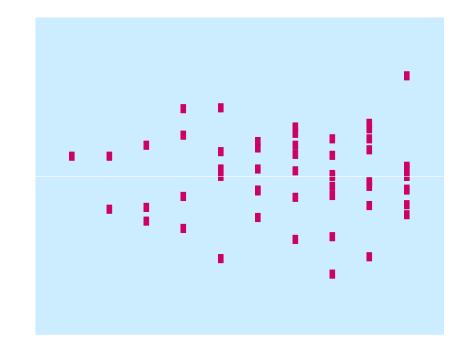
#### Stationarity: an example

- Reserving methods assume that past experience is predictive of the future
  - Exogenous non-stationary factors (economic/social inflation)
  - Endogenous non-stationary factors (claim settlement/coverage)
  - Non-stationarity overstates the loss generating process volatility
- The volatility of the loss generating process can be significantly overstated in the absence of stationarity



Large, Countrywide Insurer — Personal Auto Liability — 12-to-24 Paid LDF

This actual data sample of development factors shows that variation is not purely random


# The historical data needs to be adjusted to a stationary basis

#### **Other Liability Residuals**

Before Adjustment



#### After Adjustment



# **Step 3: Benchmark significance level thresholds**

- For outcome materiality, the calculations are based on the "Bright Line" Test:
  - Measures the difference between surplus as regards to policyholders and the NAIC Risk Based Capital (RBC) that would downgrade the company into the next lower RBC level
  - Difference serves as a maximum standard of materiality
- 39 financially healthy and16 financially impaired companies were analyzed, for all lines combined, (total risk basis)
  - Claim liability distribution was calculated
  - Standard of materiality based on "Bright Line" test was calculated
  - Benchmark significance level threshold measures the probability of losses in excess of:
  - (P= mean of claim liability distribution + materiality standard)
    - Benchmark exceedence ratio measures the expected losses in excess of P as a ratio to the mean
- For most financial healthy companies the resulting significance threshold levels were 0.0%

# Materiality standards for financially healthy companies

|                        | Percentile Threshold<br>Benchmark<br>Significance Levels |            | Tail Value at Risk<br>Benchmark<br>Exceedence Ratio |            |  |
|------------------------|----------------------------------------------------------|------------|-----------------------------------------------------|------------|--|
|                        |                                                          |            |                                                     |            |  |
|                        | Lower Tail                                               | Upper Tail | Lower Tail                                          | Upper Tail |  |
| Estimation materiality | 10.0%                                                    | 7.5%       | n/a                                                 | 2.0%       |  |
| Outcome materiality    | 8.0%                                                     | 6.0%*      | n/a                                                 | 1.5%       |  |

\*Corresponding standard for financially impaired companies is 18.0%

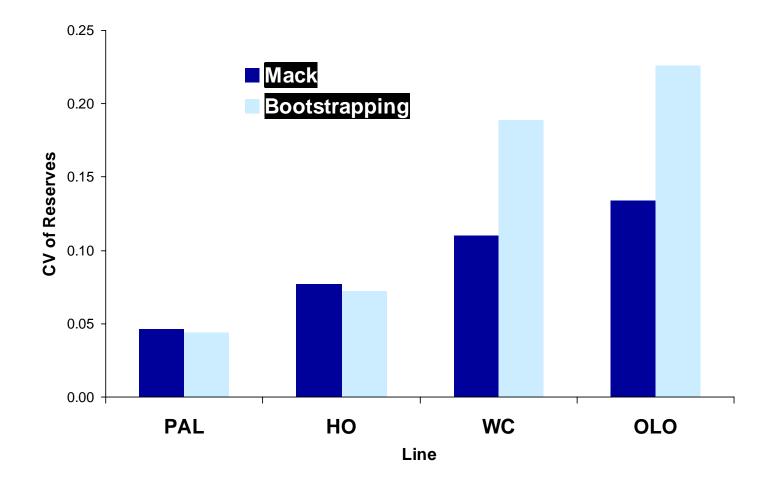
# **Step 4: Calculate materiality standards**

- Calculate claim liability distributions (for Mack vs. Bootstrapping methods) by legal entity
- Normalize the claim liability distribution so that mean of the distribution is equal to the carried reserves
- The upper tail outcome/estimation materiality standard =
  - (percentile implied by the outcome/estimation benchmark significance level/exceedence ratio) – (percentile of the carried reserves)

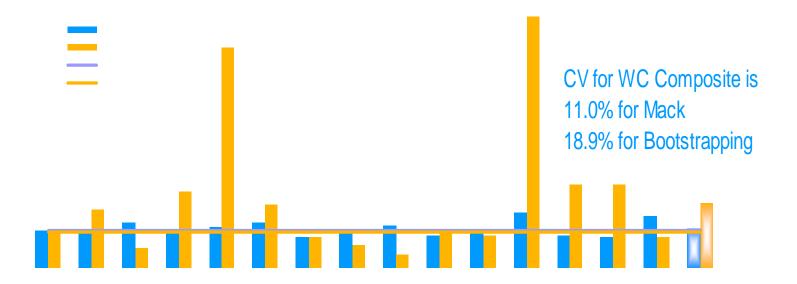
# **Step 5: Aggregate various lines together**

- Mack and Bootstrapping calculate claim liability distributions for individual lines of business
- The volatility of the aggregate claim liability distribution increases with:
  - The volatility of each individual line of business
  - The correlation across lines
- We employed a Normal Copula approach to calculate multi-line claim liability distributions and the implied estimation and outcome materiality standards

# **Results and Conclusions**


# **Executive Summary**

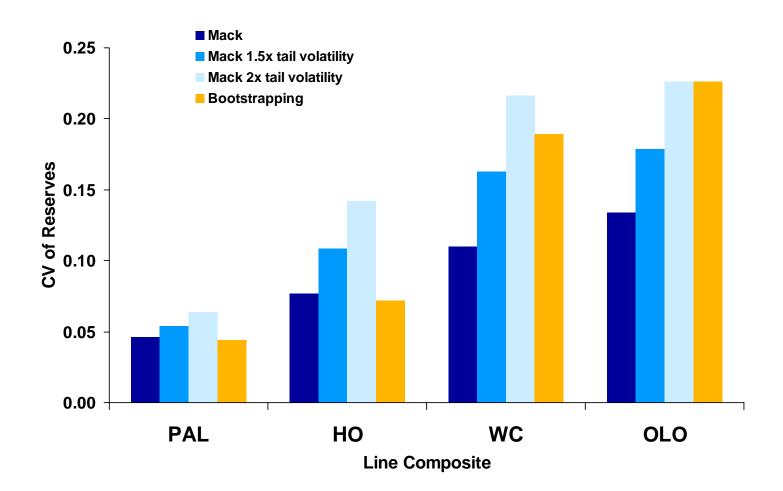
- Materiality can have different implications when viewed from a statistical, financial or solvency perspective
- Standards of materiality vary by line of business
- Materiality standards can be arrived at using a framework of statistical hypothesis testing
- Any approach to deriving standards of materiality requires the measure of an appetite for adverse outcomes
  - Percentile Threshold and Expected Exceedence Ratio:
    - Type I/Type II error in the hypothesis testing framework
- Percentile Threshold an Expected Exceedence Ratio approach yield different standards of materiality
- Benchmarks should be derived based on combined industry data


### **Observations on stochastic methodologies**

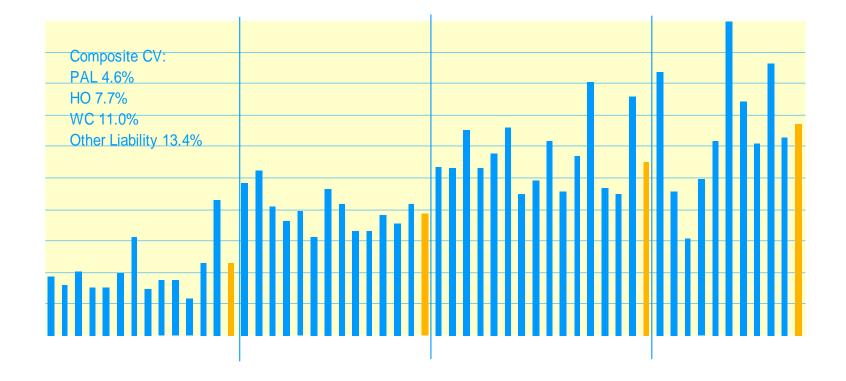
- Standard volatility measuring techniques overstate the volatility of the underlying loss exposure
- Results inconsistent between paid and incurred loss data
- Mack and Bootstrapping techniques employed in our study produce different measures of volatility
- The standard stochastic methodologies do not differentiate well between process and parameter risks

### **Comparison of parameter variability from Mack and Bootstrapping methods**



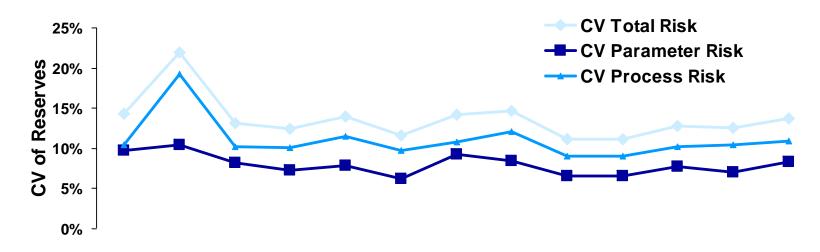

### **Comparison of parameter variability break from Mack and Bootstrapping methods - WC**




The bootstrapping method is sensitive to outliers in the data

The median CVs are close for both stochastic methods

#### Comparison of parameter variability from the Mack method under various tail assumptions and the Bootstrapping method




### **Comparison of parameter variability from the Mack method:** by size of company



No clear relationship between claim liability volatility and the size of the company

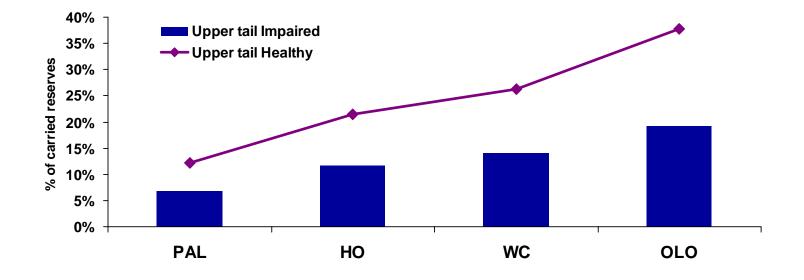
# Comparison of total, process and parameter variability from the Mack method: Homeowners



Individual companies sorted by premium

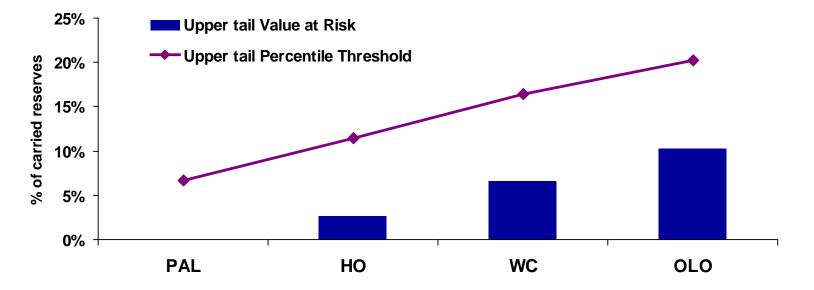
- Parameter risk is invariant of the size of the company
- Process risk should decrease for larger companies
  - Empirical data does not support that assertion
- Process risk might be overstated by the Mack method

# Estimation Materiality Standard – Bootstrapping and Mack


|                         | Mack       |            | Bootstrapping |            |
|-------------------------|------------|------------|---------------|------------|
| Line of Business        | Lower Tail | Upper Tail | Lower Tail    | Upper Tail |
|                         |            |            |               |            |
| Personal Auto Liability | -5.8%      | 6.7%       | -5.4%         | 6.3%       |
|                         |            |            |               |            |
| Homeowners              | -9.7%      | 11.4%      | -8.8%         | 10.5%      |
|                         |            |            |               |            |
| Workers Compensation    | -13.6%     | 16.4%      | -19.0%        | 25.3%      |
|                         |            |            |               |            |
| Other Liability         | -16.4%     | 20.2%      | 25.7%         | 32.7%      |

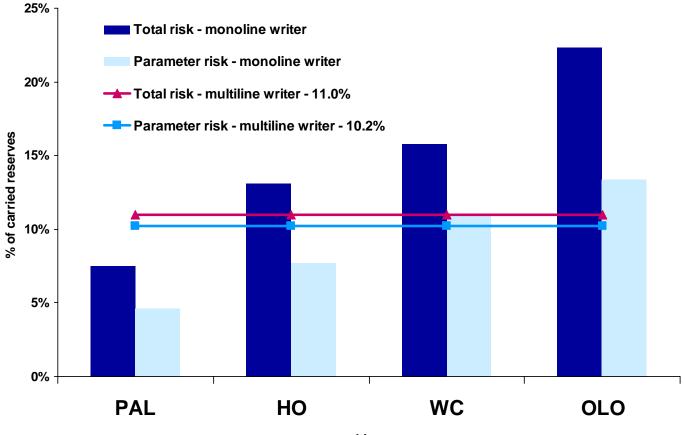
# Estimation and Outcome Materiality Standard – Mack

|                         | Estimation Standards |            | Outcome Standards |            |
|-------------------------|----------------------|------------|-------------------|------------|
| Line of Business        | Lower Tail           | Upper Tail | Lower Tail        | Upper Tail |
| Personal Auto Liability | -5.8%                | 6.7%       | -10.2%            | 12.2%      |
| Homeowners              | -9.7%                | 11.4%      | -17.5%            | 21.5%      |
| Workers Compensation    | -13.6%               | 16.4%      | -20.8%            | 26.2%      |
| Other Liability         | -16.4%               | 20.2%      | -28.0%            | 37.7%      |


- Outcome materiality standards employ both process and parameter risk
- Estimation materiality standards employ parameter risk only
- Higher significance level benchmarks apply for estimation materiality

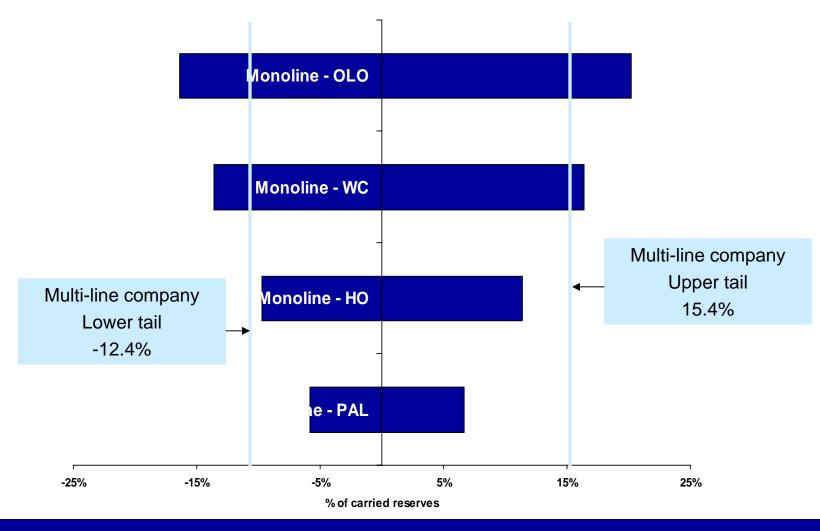
## **Outcome Materiality Standards –** Healthy vs. Impaired Companies – Mack




- There is a greater reserve uncertainty associated with the reserves of a financially impaired company
- Selected benchmarks significance level is higher for financial impaired companies

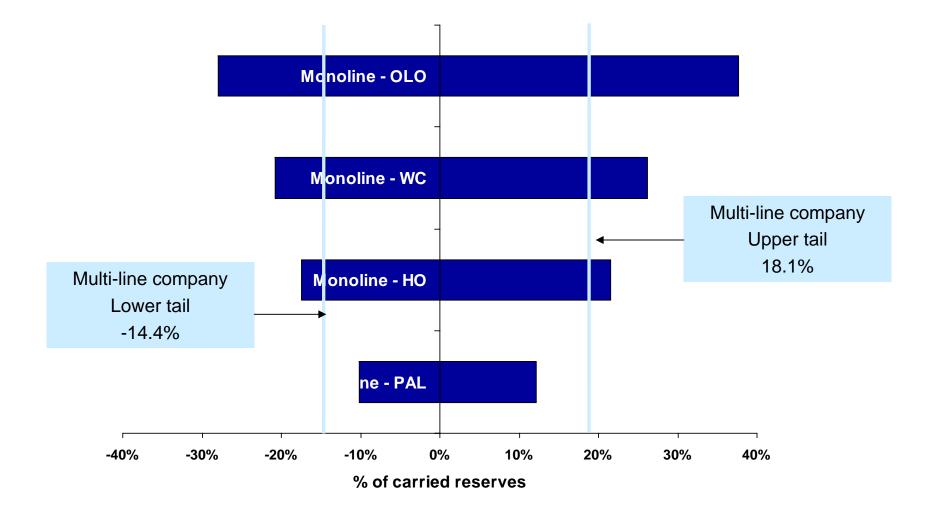
#### **Upper tail Estimation Materiality Standards – Mack**




- The percentile threshold approach measures the probability that the actual claim liability amount would exceed a selected dollar threshold (i.e., carried reserves)
  - It does not consider the magnitude of the deficiency
- The tail value at risk approach measures the expected shortfall of claim liabilities
  - Is affected by the extreme claim liability outcomes

### **Coefficient of Variation**




Line

### **Estimation Materiality Standards**



© 2008 Towers Perrin

### **Outcome Materiality Standards**



# **Outcome Materiality Standards –** Mack Upper Tail or Adverse Deviation

#### **Outcome Materiality Standards – Mack Upper Tail or Adverse Deviation**

| Line of Business        | Before Adjustment | After Adjustment |
|-------------------------|-------------------|------------------|
| Personal Auto Liability | 12.2%             | 5.7%             |
| Workers Compensation    | 26.2%             | 18.0%            |
| Other Liability         | 37.7%             | 16.7%            |

#### Estimation Materiality Standards – Mack Upper Tail or Adverse Deviation

| Line of Business        | Before Adjustment | After Adjustment |
|-------------------------|-------------------|------------------|
| Personal Auto Liability | 6.7%              | 3.6%             |
| Workers Compensation    | 16.4%             | 12.5%            |
| Other Liability         | 20.2%             | 11.5%            |

- 27 to 30 companies composite AM Best data, adjusted for exogenous and endogenous influences
- Results suggests that standards are overstated in the absence of stationarity

### **Questions?**

### **Author's Contact Information**

Emmanuel T. Bardis Towers Perrin 111 Huntington Avenue 8th Floor Boston, MA 02199-7612 (617)638-3807 manolis.bardis@towersperrin.com

Stephen P. Lowe Towers Perrin Forestal Centre 175 Powder Forest Drive Weatogue, CT 06089-9658 (860)843-7057 stephen.lowe@towersperrin.com Christina L. Gwilliam Towers Perrin 111 Huntington Avenue 8<sup>th</sup> Floor Boston, MA 02199-7612 (617)638-3864 christina.gwilliam@towersperrin.com

Atul S. Malhotra ACE American Insurance Company 455 Market Street Suite 500 San Francisco, CA 94105 (415)547-4587 atul.malhotra@ace-ina.com