The Bornhuetter–Ferguson Principle

Klaus D. Schmidt & Mathias Zocher

Lehrstuhl für Versicherungsmathematik Technische Universität Dresden

CAS Spring Meeting Québec, June 17, 2008

- Run–Off Triangles of Cumulative Losses
- Development Patterns
- The original Bornhuetter–Ferguson Method
- The extended Bornhuetter–Ferguson Method
- The Loss–Development Method
- The Chain—Ladder Method
- The Cape Cod Method
- The Additive Method
- The Bornhuetter–Ferguson Principle
- An Example

- Run–Off Triangles of Cumulative Losses

- The Loss—Development Method

- The Additive Method
- An Example

Run–Off Triangles of Cumulative Losses (1)

An example from the *Claims Reserving Manual*:

Accident	Development Year							
Year	0	1	1 2 3 4					
0	1001	1855	2423	2988	3335	3483		
1	1113	2103	2774	3422	3844			
2	1265	2433	3233	3977				
3	1490	2873	3880					
4	1725	3261						
5	1889							

The enumeration of the development years represents delays with respect to the accident years.

Run-Off Triangles of Cumulative Losses (2)

Accident		Development Year							
Year	0	1		k		n-i		n - 1	n
0 1	S _{0,0} S _{1,0}	S _{0,1} S _{1,1}		$S_{0,k}$ $S_{1,k}$		$S_{0,n-i}$ $S_{1,n-i}$		$S_{0,n-1}$ $S_{1,n-1}$	S _{0,n} S _{1,n}
: ;		:		: S _{i,k}		: : S _{i,n-i}		: S _{i,n-1}	: : S _{i,n}
: : n-k	: : : : : : : : : :	: : S _{n-k,1}		: : S _{n-k,k}		: : S _{n-k,n-i}		$S_{n-k,n-1}$	$S_{n-k,n}$
: n-1		: S _{n-1,1}		$S_{n-1,k}$: S _{n-1,n-i}		: S _{n-1,n-1}	: S _{n-1,n}
n	$S_{n,0}$	$S_{n,1}$		$S_{n,k}$		$S_{n,n-i}^{n-1,n-1}$		$S_{n,n-1}$	$S_{n,n}$

A cumulative loss $S_{i,k}$ is said to be

- ▶ observable if $i + k \le n$.
- ▶ non–observable or future if i + k > n.
- ightharpoonup current if i + k = n.
- ightharpoonup ultimate if k=n.

Run–Off Triangles of Cumulative Losses (3)

The purpose of loss reserving is to predict

- \triangleright the ultimate losses $S_{i,n}$ and
- ▶ the accident year reserves $S_{i,n} S_{i,n-i}$

More generally: The aim is to predict

- ▶ the future cumulative losses S_{i,k}
- ▶ the future incremental losses $Z_{i,k} := S_{i,k} S_{i,k-1}$
- ▶ the calendar year reserves $\sum_{i=p-n}^{n} Z_{i,p-i}$
- the total reserve $\sum_{i=1}^{n} \sum_{l=n-i+1}^{n} Z_{j,l}$

with
$$i + k \ge n + 1$$
 and $p = n + 1, ..., 2n$.

Thus: The principal task considered here is to predict the future cumulative losses.

- Development Patterns

- The Loss—Development Method

- An Example

Development Patterns

A development pattern for quotas consists of parameters $\gamma_0, \gamma_1, \dots, \gamma_n$ with

$$\gamma_k = \mathsf{E}[\mathcal{S}_{i,k}]/\mathsf{E}[\mathcal{S}_{i,n}]$$

for all k = 0, 1, ..., n and for all i = 0, 1, ..., n. These parameters are called development quotas (percentages reported).

A development pattern for factors consists of parameters $\varphi_1, \ldots, \varphi_n$ with

$$\varphi_k = \mathsf{E}[S_{i,k}]/\mathsf{E}[S_{i,k-1}]$$

for all k = 1, ..., n and for all i = 0, 1, ..., n. These parameters are called development factors (age-to-age factors).

Development Patterns: Cumulative Losses and Quotas

Accident	Development Year						
Year	0	1	2	3	4	5	
0	1001	1855	2423	2988	3335	3483	
1	1113	2103	2774	3422	3844	4044	
2	1265	2433	3233	3977	4477	4677	
3	1490	2873	3880	4880	5380	5680	
4	1725	3261	4361	5461	5961	6361	
5	1889	3489	4889	5889	6489	6889	
0	0.287	0.533	0.696	0.858	0.958	1.000	
1	0.275	0.520	0.686	0.846	0.951	1.000	
2	0.270	0.520	0.691	0.850	0.957	1.000	
3	0.262	0.506	0.683	0.859	0.947	1.000	
4	0.271	0.513	0.686	0.859	0.937	1.000	
5	0.274	0.506	0.710	0.855	0.942	1.000	

Development Patterns: Cumulative Losses and Factors

Accident	Development Year						
Year	0	1	2	3	4	5	
0	1001	1855	2423	2988	3335	3483	
1	1113	2103	2774	3422	3844	4044	
2	1265	2433	3233	3977	4477	4677	
3	1490	2873	3880	4880	5380	5680	
4	1725	3261	4361	5461	5961	6361	
5	1889	3489	4889	5889	6489	6889	
0		1.853	1.306	1.233	1.116	1.044	
1		1.889	1.319	1.234	1.123	1.052	
2		1.923	1.329	1.230	1.126	1.045	
3		1.928	1.351	1.258	1.102	1.056	
4		1.890	1.337	1.252	1.092	1.067	
5		1.847	1.401	1.205	1.102	1.062	

Development Patterns: Quotas and Factors

If the parameters $\gamma_0, \gamma_1, \dots, \gamma_n$ form a development pattern for quotas, then the parameters $\varphi_1, \ldots, \varphi_n$ with

$$\varphi_k := \frac{\gamma_k}{\gamma_{k-1}}$$

form a development pattern for factors.

If the parameters $\varphi_1, \ldots, \varphi_n$ form a development pattern for factors, then the parameters $\gamma_0, \gamma_1, \dots, \gamma_n$ with

$$\gamma_k := \prod_{l=k+1}^n \frac{1}{\varphi_l}$$

form a development pattern for quotas.

Development Patterns: Estimation of Quotas

For estimation of the parameter γ_k of a development pattern for quotas, the only obvious estimator provided by the run–off triangle is the empirical individual quota

$$\widehat{\gamma}_{0,k} := \mathcal{S}_{0,k}/\mathcal{S}_{0,n}$$

Accident	Development Year					
Year	0	1	2	3	4	5
0	0.287	0.533	0.696	0.858	0.958	1.000
1	0.275	0.520	0.686	0.846	0.951	1.000
2	0.270	0.520	0.691	0.850	0.957	1.000
3	0.262	0.506	0.683	0.859	0.947	1.000
4	0.271	0.513	0.686	0.859	0.937	1.000
5	0.274	0.506	0.710	0.855	0.942	1.000

Development Patterns: Estimation of Factors

For estimation of the parameter φ_k of a development pattern for factors, the run-off triangle provides the empirical individual factors

$$\widehat{\varphi}_{i,k} := S_{i,k}/S_{i,k-1}$$

with i = 0, 1, ..., n - k. Moreover, any weighted mean of these estimators is an estimator as well.

Accident	Development Year						
Year	0	1	2	3	4	5	
0		1.853	1.306	1.233	1.116	1.044	
1		1.889	1.319	1.234	1.123	1.052	
2		1.923	1.329	1.230	1.126	1.045	
3		1.928	1.351	1.258	1.102	1.056	
4		1.890	1.337	1.252	1.092	1.067	
5		1.847	1.401	1.205	1.102	1.062	

Development Patterns: Chain—Ladder Factors

The chain-ladder factors

$$\widehat{\varphi}_{k}^{\mathsf{CL}} := \frac{\sum_{j=0}^{n-k} S_{j,k}}{\sum_{j=0}^{n-k} S_{j,k-1}} = \sum_{j=0}^{n-k} \frac{S_{j,k-1}}{\sum_{h=0}^{n-k} S_{h,k-1}} \widehat{\varphi}_{j,k}$$

are weighted means and may be used to estimate the development factors φ_k .

Accident	Development Year k							
Year i	0	1	2	3	4	5		
0	1001	1855	2423	2988	3335	3483		
1	1113	2103	2774	3422	3844			
2	1265	2433	3233	3977				
3	1490	2873	3880					
4	1725	3261						
5	1889							
$\widehat{arphi}_k^{ extsf{CL}}$		1.899	1.329	1.232	1.120	1.044		

Development Patterns: Chain-Ladder Quotas

The chain-ladder quotas

$$\widehat{\gamma}_k^{\mathsf{CL}} := \prod_{l=k+1}^n \frac{1}{\widehat{\varphi}_l^{\mathsf{CL}}}$$

may be used to estimate the development quotas γ_k .

Accident		Development Year k							
Year i	0	1	2	3	4	5			
0	1001	1855	2423	2988	3335	3483			
1	1113	2103	2774	3422	3844				
2	1265	2433	3233	3977					
3	1490	2873	3880						
4	1725	3261							
5	1889								
$\widehat{arphi}_k^{ extsf{CL}}$		1.899	1.329	1.232	1.120	1.044			
$\widehat{\gamma}_k^{CL}$	0.278	0.527	0.701	0.864	0.968	1			

- The original Bornhuetter–Ferguson Method
- The Loss—Development Method

- The Additive Method
- An Example

The original Bornhuetter–Ferguson Method (1)

In its original version, the Bornhuetter–Ferguson method aims at predicting calendar year reserves

$$R_i := S_{i,n} - S_{i,n-i}$$

If $\gamma_0, \gamma_1, \dots, \gamma_n$ is a development pattern for quotas, then the expected reserves satisfy the model equation

$$E[R_i] = \left(1 - \gamma_{n-i}\right) E[S_{i,n}]$$

The original Bornhuetter–Ferguson predictors of the reserves R_i are defined as

$$\widehat{R}_{i} := \left(1 - \widehat{\gamma}_{n-i}^{CL}\right) \pi_{i} \widehat{\kappa}_{i}$$

where

- $ightharpoonup \hat{\gamma}_{n-i}^{\text{CL}}$ is the current chain–ladder quota,
- $\triangleright \pi_i$ is a volume measure, and
- $ightharpoonup \widehat{\kappa}_i$ is an estimator of the expected loss ratio $\kappa_i := E[S_{i,n}/\pi_i]$

The original Bornhuetter–Ferguson Method (2)

▶ Transformation into predictors of the ultimate losses $S_{i,n}$:

$$\widehat{S}_{i,n} := S_{i,n-i} + \left(1 - \widehat{\gamma}_{n-i}^{CL}\right) \pi_i \widehat{\kappa}_i$$

Transformation into predictors of other future cumulative losses $S_{i,k}$:

$$\widehat{S}_{i,k} := S_{i,n-i} + \left(\widehat{\gamma}_k^{\mathsf{CL}} - \widehat{\gamma}_{n-i}^{\mathsf{CL}}\right) \pi_i \widehat{\kappa}_i$$

Idea:

- Replace the chain–ladder quotas by arbitrary estimators of the quotas.
- ▶ Replace the estimators $\pi_i \hat{\kappa}_i$ by arbitrary estimators of the expected ultimate losses $E[S_{i,n}]$.

- The original Bornhuetter—Ferguson Method
- The extended Bornhuetter

 Ferguson Method

- The Additive Method
- An Example

The extented Bornhuetter–Ferguson Method (1)

The extended Bornhuetter–Ferguson method is based on the assumption, that there exists a development pattern for quotas and that

prior estimators

$$\widehat{\gamma}_0, \widehat{\gamma}_1, \dots, \widehat{\gamma}_n$$

(with $\hat{\gamma}_n = 1$) of the development quotas $\gamma_0, \gamma_1, \dots, \gamma_n$ and

prior estimators

$$\widehat{\alpha}_0, \widehat{\alpha}_1, \dots, \widehat{\alpha}_n$$

of the expected ultimate losses

$$\alpha_i := E[S_{i,n}]$$

with
$$i = 0, 1, \dots, n$$
 are available.

The extended Bornhuetter–Ferguson Method (2)

These prior estimators can be obtained from

- internal information (provided by the run-off triangle, like chain-ladder factors),
- volume measures (like premiums) for the portfolio under consideration,
- external information (market statistics or data from similar portfolios) or
- a combination of these data.

The extended Bornhuetter–Ferguson Method (3)

The future cumulative losses satisfy the model equation

$$E[S_{i,k}] = (\gamma_k - \gamma_{n-i})E[S_{i,n}]$$

Accordingly, the extended Bornhuetter–Ferguson predictors of the future cumulative losses are defined as

$$\widehat{S}_{i,k}^{\mathsf{BF}} := S_{i,n-i} + \left(\widehat{\gamma}_k - \widehat{\gamma}_{n-i}\right)\widehat{\alpha}_i$$

Thus:

- The run-off triangle provides information perhaps only via the current losses.
- The predictors of the ultimate losses are obtained by linear extrapolation from the current losses.

The extended Bornhuetter–Ferguson Method (4)

Accident	Development Year k							
Year i	0	1	2	3	4	5	\widehat{lpha}_i	
0						3483	3517	
1					3844	4043	3981	
2				3977	4391	4621	4598	
3			3880	4785	4389	5577	5658	
4		3261	4442	5436	5995	6306	6214	
5	1889	3344	4546	5558	6127	6443	6325	
$\widehat{\gamma}_{\pmb{k}}$	0.280	0.510	0.700	0.860	0.950	1.000		
$1-\widehat{\gamma}_k$	0.720	0.490	0.300	0.860	0.050	0.000		

- The Loss–Development Method

- The Additive Method
- An Example

The Loss–Development Method (1)

The loss-development method is based on the assumption, that there exists a development pattern for quotas and that prior estimators

$$\widehat{\gamma}_0, \widehat{\gamma}_1, \ldots, \widehat{\gamma}_n$$

(with $\hat{\gamma}_n = 1$) of the development quotas $\gamma_0, \gamma_1, \dots, \gamma_n$ are available.

The loss-development method does not involve any prior estimators for the expected ultimate losses.

The Loss–Development Method (2)

The future cumulative losses satisfy the model equation

$$E[S_{i,k}] = \gamma_k \frac{E[S_{i,n-i}]}{\gamma_{n-i}}$$

Accordingly, the loss-development predictors of the future cumulative losses are defined as

$$\widehat{S}_{i,k}^{\mathsf{LD}} := \widehat{\gamma}_k \, rac{S_{i,n-i}}{\widehat{\gamma}_{n-i}}$$

Thus:

- The run-off triangle provides information perhaps only via the current losses.
- The predictors of the ultimate losses are obtained by scaling the current losses.
- The predictors of other future cumulative losses are obtained by scaling the predictors of the ultimate losses.

The Loss–Development Method (3)

Accident	Development Year k						
Year i	0	1	2	3	4	5	
0						3483	
1					3844	4046	
2				3977	4393	4624	
3			3880	4767	5266	5543	
4		3261	4476	5499	6074	6394	
5	1889	3440	4722	5802	6409	6746	
$\widehat{\gamma}_{k}$	0,280	0,510	0,700	0,860	0,950	1,000	

The Loss–Development Method (4)

Because of the definition

$$\widehat{S}_{i,k}^{\mathsf{LD}} := \widehat{\gamma}_k \, rac{S_{i,n-i}}{\widehat{\gamma}_{n-i}}$$

the loss-development predictors can be written as

$$\widehat{S}_{i,k}^{\mathsf{LD}} = S_{i,n-i} + \left(\widehat{\gamma}_k - \widehat{\gamma}_{n-i}\right) \frac{S_{i,n-i}}{\widehat{\gamma}_{n-i}}$$

In this form, the loss-development predictors attain the shape of the extended Bornhuetter-Ferguson predictors with respect to the prior estimators

$$\widehat{\alpha}_{i}^{\mathsf{LD}} := \frac{S_{i,n-i}}{\widehat{\gamma}_{n-i}}$$

of the expected ultimate losses.

- The Loss—Development Method
- The Chain—Ladder Method

- An Example

The Chain–Ladder Method (1)

The chain-ladder method is based on the assumption that there exists a development pattern for factors.

The chain-ladder method relies completely on the observable cumulative losses of the run-off triangle and involves no prior estimators at all.

As estimators of the development factors, the chain-ladder method uses the chain-ladder factors

$$\widehat{\varphi}_{k}^{\mathsf{CL}} := \frac{\sum_{j=0}^{n-k} S_{j,k}}{\sum_{j=0}^{n-k} S_{j,k-1}} = \sum_{j=0}^{n-k} \frac{S_{j,k-1}}{\sum_{h=0}^{n-k} S_{h,k-1}} \widehat{\varphi}_{j,k}$$

The Chain-Ladder Method (2)

The future cumulative losses $S_{i,k}$ satisfy the model equation

$$E[S_{i,k}] = E[S_{i,n-i}] \prod_{l=n-i+1}^{k} \varphi_l$$

Accordingly, the chain–ladder predictors of the future cumulative losses are defined as

$$\widehat{S}_{i,k}^{\mathsf{CL}} := S_{i,n-i} \prod_{l=n-i+1}^{k} \widehat{\varphi}_{l}^{\mathsf{CL}}$$

Thus:

The chain-ladder method consists in successive scaling of the current loss $S_{i,n-i}$ to the level of the future cumulative loss $S_{i,k}$.

The Chain–Ladder Method (3)

Accident	Development Year k							
Year i	0	1	2	3	4	5		
0	1001	1855	2423	2988	3335	3483		
1	1113	2103	2774	3422	3844	4013		
2	1265	2433	3233	3977	4454	4650		
3	1490	2873	3880	4780	5354	5590		
4	1725	3261	4334	5339	5980	6243		
5	1889	3587	4767	5873	6578	6867		
$\widehat{arphi}_k^{ ext{CL}}$		1,899	1,329	1,232	1,120	1,044		

The Chain–Ladder Method (4)

Because of the definition

$$\widehat{S}_{i,k}^{\mathsf{CL}} := S_{i,n-i} \prod_{l=n-i+1}^{k} \widehat{\varphi}_{l}^{\mathsf{CL}}$$

the chain-ladder predictors of the future cumulative losses can be written as

$$\widehat{S}_{i,k}^{\text{CL}} = \widehat{\gamma}_{k}^{\text{CL}} \, \frac{S_{i,n-i}}{\widehat{\gamma}_{n-i}^{\text{CL}}}$$

In this form, the chain-ladder predictors attain the shape of the loss-development predictors with respect to the chain-ladder quotas.

The Chain–Ladder Method (5)

Since

$$\widehat{S}_{i,k}^{\text{CL}} = \widehat{\gamma}_k^{\text{CL}} \, \frac{S_{i,n-i}}{\widehat{\gamma}_{n-i}^{\text{CL}}}$$

the chain-ladder predictors of the future cumulative losses can also be written as

$$\widehat{S}_{i,k}^{\text{CL}} = S_{i,n-i} + \left(\widehat{\gamma}_k^{\text{CL}} - \widehat{\gamma}_{n-i}^{\text{CL}}\right) \frac{S_{i,n-i}}{\widehat{\gamma}_{n-i}^{\text{CL}}}$$

In this form, the chain-ladder predictors attain the shape of the extended Bornhuetter-Ferguson predictors with respect to the chain-ladder quotas and the prior estimators

$$\widehat{\alpha}_{i}^{\mathsf{CL}} := \frac{S_{i,n-i}}{\widehat{\gamma}_{n-i}^{\mathsf{CL}}}$$

of the expected ultimate losses.

- The Loss—Development Method
- The Cape Cod Method

- An Example

The Cape Cod Method (1)

The Cape Cod method is based on the assumption, that there exists a development pattern for quotas and that prior estimators

$$\widehat{\gamma}_0, \widehat{\gamma}_1, \dots, \widehat{\gamma}_n$$

(with $\hat{\gamma}_n = 1$) of the development quotas $\gamma_0, \gamma_1, \dots, \gamma_n$ are available.

It is also based on the assumption that there exist volume measures $\pi_0, \pi_1, \dots, \pi_n$ for the accident years and that the expected ultimate loss ratio

$$\kappa := E\left[\frac{S_{i,n}}{\pi_i}\right]$$

is the same for all accident years.

The Cape Cod Method (2)

The future cumulative losses satisfy the model equation

$$E[S_{i,k}] = E[S_{i,n-i}] + (\gamma_k - \gamma_{n-i})\pi_i \kappa$$

Accordingly, the Cape Cod predictors of the future cumulative losses are defined as

$$\widehat{S}_{i,k}^{\text{CC}} := S_{i,n-i} + \left(\widehat{\gamma}_k - \widehat{\gamma}_{n-i}\right) \pi_i \, \widehat{\kappa}^{\text{CC}}(\boldsymbol{\pi}, \widehat{\boldsymbol{\gamma}})$$

where

$$\widehat{\kappa}^{ extsf{CC}}(oldsymbol{\pi}, \widehat{\gamma}) := rac{\sum_{j=0}^n S_{j,n-j}}{\sum_{i=0}^n \pi_i \, \widehat{\gamma}_{n-i}}$$

is the Cape Cod loss ratio.

The Cape Cod Method (3)

Therefore, the Cape Cod predictors of the future cumulative losses have the shape of the extended Bornhuetter-Ferguson predictors with respect to the Cape Cod estimators

$$\widehat{\alpha}_{i}^{\text{CC}} := \pi_{i} \, \widehat{\kappa}^{\text{CC}}(\boldsymbol{\pi}, \widehat{\boldsymbol{\gamma}})$$

of the expected ultimate losses.

Table of Contents

- Run–Off Triangles of Cumulative Losses
- Development Patterns
- The original Bornhuetter—Ferguson Method
- The extended Bornhuetter—Ferguson Method
- The Loss—Development Method
- The Chain—Ladder Method
- The Cape Cod Method
- The Additive Method
- The Bornhuetter–Ferguson Principle
- An Example

The Additive Method (1)

The additive method (or incremental loss ratio method) is based on the assumption, that there exist

- \triangleright volume measures $\pi_0, \pi_1, \dots, \pi_n$ for the accident years, and
- \triangleright parameters $\zeta_0, \zeta_1, \dots, \zeta_n$ such that the expected incremental loss ratio

$$\zeta_k := E\left[\frac{Z_{i,k}}{\pi_i}\right]$$

is the same for all accident years, where

$$Z_{i,k} := \left\{ egin{array}{ll} S_{i,0} & ext{if } k=0 \\ S_{i,k} - S_{i,k-1} & ext{else} \end{array}
ight.$$

is the incremental loss of accident year i and development year k.

The Additive Method (2)

The cumulative and incremental losses satisfy the model equation

$$E[S_{i,k}] = E[S_{i,n-i}] + \pi_i \sum_{l=n-i+1}^k \zeta_l$$

Accordingly, the additive predictors of the future cumulative losses are defined as

$$\widehat{S}_{i,k}^{\mathsf{AD}} := S_{i,n-i} + \pi_i \sum_{l=n-i+1}^k \widehat{\zeta}_l^{\mathsf{AD}}$$

where

$$\widehat{\zeta}_k^{\mathsf{AD}} := \frac{\sum_{j=0}^{n-k} Z_{j,k}}{\sum_{j=0}^{n-k} \pi_j}$$

is the additive incremental loss ratio of development year k.

The Additive Method (3)

Since

$$\widehat{S}_{i,k}^{\mathsf{AD}} := S_{i,n-i} + \pi_i \sum_{l=n-i+1}^{k} \widehat{\zeta}_l^{\mathsf{AD}}$$

the additive predictors can be written as

$$\widehat{S}_{i,k}^{\mathsf{AD}} := S_{i,n-i} + \left(\frac{\sum_{l=0}^{k} \widehat{\zeta}_{l}^{\mathsf{AD}}}{\sum_{l=0}^{n} \widehat{\zeta}_{l}^{\mathsf{AD}}} - \frac{\sum_{l=0}^{n-i} \widehat{\zeta}_{l}^{\mathsf{AD}}}{\sum_{l=0}^{n} \widehat{\zeta}_{l}^{\mathsf{AD}}} \right) \left(\pi_{i} \sum_{l=0}^{n} \widehat{\zeta}_{l}^{\mathsf{AD}} \right)$$

or as

$$\widehat{S}_{i,k}^{\mathsf{AD}} := S_{i,n-i} + \left(\widehat{\gamma}_k^{\mathsf{AD}}(\pi) - \widehat{\gamma}_{n-i}^{\mathsf{AD}}(\pi)\right) \widehat{\alpha}_i^{\mathsf{AD}}(\pi)$$

In this form, the additive predictors of the future cumulative losses have the shape of the extended Bornhuetter-Ferguson predictors with respect to the additive quotas $\hat{\gamma}_{k}^{AD}(\pi)$ and the additive estimators $\widehat{\alpha}_{i}^{AD}(\pi)$ of the expected ultimate losses.

The Additive Method (4)

Remark:

It can be shown that

$$\widehat{\alpha}_{i}^{\mathsf{AD}}(\pi) = \widehat{\alpha}_{i}^{\mathsf{CC}}(\pi, \widehat{\gamma}^{\mathsf{AD}}(\pi))$$

such that the additive method can be viewed as the Cape Cod method with respect to the volume measures π and the additive quotas $\widehat{\gamma}^{AD}(\pi)$.

Table of Contents

- The Loss—Development Method

- The Additive Method
- The Bornhuetter–Ferguson Principle
- An Example

The Bornhuetter–Ferguson Principle (1)

Comparison of certain versions of the extended Bornhuetter-Ferguson method:

Prior Estimators	Prior Estimators of Cumulative Quotas			
of Expected Ultimate Losses	$\widehat{\gamma}^{ ext{external}}$	$\widehat{\gamma}^{CL}$	$\widehat{\gamma}^{AD}(\pi)$	
$\widehat{lpha}^{ ext{external}}$	Bornhuetter– Ferguson Method (external)			
$\widehat{lpha}^{ extsf{LD}}(\widehat{\gamma})$	Loss-Development Method (external)	Chain-Ladder Method		
$\widehat{lpha}^{ extsf{CC}}(\pi,\widehat{\gamma})$	Cape Cod Method (external)		Additive Method	

The Bornhuetter–Ferguson Principle (2)

The Bornhuetter-Ferguson principle consists of

- an analytic part, in which known methods of loss reserving are interpreted as versions of the extended Bornhuetter-Ferguson method.
- a synthetic part, in which components of different versions of the extended Bornhuetter-Ferguson method are used to construct new versions of the extended Bornhuetter-Ferguson method, and
- the simultaneous application of several versions of the extended Bornhuetter-Ferguson method to a given run-off triangle of cumulative losses.

The Bornhuetter–Ferguson Principle (3)

Application of the Bornhuetter–Ferguson principle may result in

- the selection of reliable predictors,
- the selection of reliable ranges,
- the comparison of the given portfolio with a market portfolio, and
- the control of pricing.

In either case, careful actuarial judgement of the quality of the sources of information underlying the different versions of the extended Bornhuetter–Ferguson method is essential.

Table of Contents

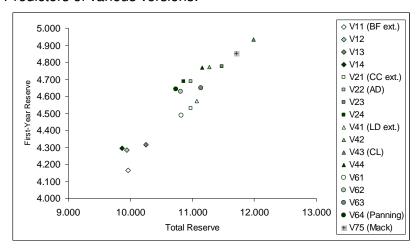
- The Loss—Development Method

- An Example

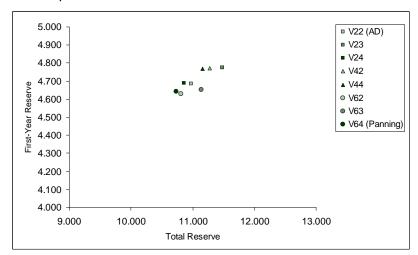
Modified example:

Acc.		[Developm	ent Year	k			
Year i	0	1	2	3	4	5	π_i	$\widehat{lpha}_i^{ ext{ext}}$
0	1001	1855	2423	2988	3335	3483	4000	3520
1	1113	2103	2774	3422	3844		4500	3980
2	1265	2433	3233	3977			5300	4620
3	1490	2873	3880				6000	5660
4	1725	4261					6900	6210
5	1889						8200	6330
$\widehat{\gamma}_{\it k}^{\rm ext}$	0.2800	0.5300	0.7100	0.8600	0.9500	1.0000		

Predictors of various versions:



Reliable predictors:



Selected predictor:

