

Evaluating Reinsurance Pricing and Optimization from Cedants' Perspective

Donald Treanor

Zurich North America Commercial

CAS Spring Meeting, Quebec, 17 June 2008

Disclaimer

 The opinions expressed in this presentation are those of the presenter and are not the opinions of the CAS or the presenter's employer

Agenda

- Why Optimize Reinsurance
- Initial Steps
 - Risk Tolerance
 - Minimum Attachment
 - Maximum Retention
- Overview of Sample Company XYZ
- Reinsurance Options
- Metrics
- Conclusion

- Stability
- Catastrophe protection
- Capacity
- Surplus relief
- Underwriting expertise
- Withdrawal from a territory or line of business

Why We Really Buy Reinsurance

- I don't want those losses to affect my bonus.
- Not sure we should be writing this stuff to begin with, let's get rid of it.
- Because that's what we did last year.

Initial Steps in Optimization

Evaluate Risk Tolerance

- Depends on surplus
- Depends on desired rating
- Depends on diversification
- Depends on profitability/cycle
- Done at high level
- Over all business units/legal entities
- Preferably multiple years

Initial Steps in Optimization

- Set Minimum Attachment
 - Set at overall business level
 - Can be set by line
 - Should consider dollar trading
 - Should consider standard deviation of losses

Initial Steps in Optimization

- Setting Maximum Retention
 - Bests' Capital Adequacy Ratio requirement
 - Other regulatory requirements
 - Percentage of surplus
 - Maximum Tail Value at Risk (TVaR)
 - Percentile Losses

XYZ Insurance Company

- Four Business Divisions Total Subject Premium 2,025M
 - Four Major Lines of Business in Each
 - Line 3 is Natural Catastrophe Exposed

Subject Premium										
	Line 1	Line 2	Line 3	Line 4	Total					
Business Unit 1	90,000,000	27,000,000	162,000,000	243,000,000	522,000,000					
Business Unit 2	135,000,000	45,000,000	243,000,000	162,000,000	585,000,000					
Business Unit 3	90,000,000	18,000,000	45,000,000	27,000,000	180,000,000					
Business Unit 4	162,000,000	171,000,000	270,000,000	135,000,000	738,000,000					
Total	477,000,000	261,000,000	720,000,000	567,000,000	2,025,000,000					

XYZ Insurance Company

- Minimum Retention 50M
- Cat Protection 500M xs 100M
- 6 different options, based on retentions, deductibles and reinstatements

Simulation Model

- Losses are Modeled in Three Pieces
 - Attritional losses are modeled based on expected loss ratio and do not impact the reinsurance retention layers
 - Large losses are modeled based on frequency and severity distributions and have the potential to impact the reinsurance retention layers
 - Catastrophe losses are modeled based on the Beta distribution with secondary uncertainty similar to standard catastrophe models
- Large losses are applied to the reinsurance options based on 100,000 simulations and representative metrics are collected

Reinsurance Structures

Reinsurance Structures

50M xs 50M	50M xs 50M	50M xs 50M	50M xs 50M		50M xs 50M	50M xs 50M		50M xs 50M
1@100	1@100	1@100	1@100		1@100	1@100		1@100
							40M xs 10M	
Retained Layer							1@100	
Line 1	Line 2	Line 3	Line 4		Line 1	Line 2	Line 3	Line 4

Option 5

Option 6

XYZ Insurance Company Excess Layer Optimization Based on 100,000 Simulations

			w/o RI	Option1	Option2	Option3	Option4	Option5	Option6
figures in million USD									
- <u>+</u>	[1]	Gross	2,025.0	2,025.0	2,025.0	2,025.0	2,025.0	2,025.0	2,025.0
rēm;	[2]	Ceded	0.0	149.8	118.9	229.9	118.3	151.9	173.3
<u>. </u>	[3]	Net	2,025.0	1,875.2	1,906.1	1,795.1	1,906.7	1,873.1	1,851.7
LR	[4]	Gross (w/o RI); Ceded	67.4%	68.5%	68.4%	68.5%	68.4%	68.6%	68.6%
	[5]	Expected UW Result	75.0	5.4	15.8	-20.3	16.1	3.3	-4.3
	[6]	Standard Deviation	272.1	206.1	208.0	203.5	208.2	203.8	202.7
Result	[7]	Return Period for UW Result < 0	1 in 3.2 years	1 in 2.2 years	1 in 2.3 years	1 in 2 years	1 in 2.3 years	1 in 2.2 years	1 in 2.1 years
Š	[8]	1 in 5y	-99.6	-148.8	-140.4	-171.6	-140.2	-148.4	-155.1
	[9]	1 in 10y	-254.9	-250.4	-242.6	-272.0	-242.6	-249.0	-255.2
5	[10]	1 in 50y	-651.9	-474.6	-467.5	-495.4	-467.2	-472.9	-479.4
Net UW	[11]	1 in 100y	-853.3	-590.9	-582.3	-606.8	-583.6	-585.4	-592.9
_	[12]	1 in 250y	-1,135.0	-790.0	-781.2	-808.8	-778.0	-784.1	-790.2
	[13]	Tvar([7]) (Expected UW Result if UW Result < 0)	-232.1	-169.9	-169.1	-174.1	-163.7	-152.8	-165.0
~ –	[14]	Cost of Reinsurance (Ceded (Losses-Premium))	n/a	-69.6	-59.2	-95.3	-58.9	-71.7	-79.3
	[16]	CV (standard deviation / expected. [6]/[5])	3.63	38.32	13.17	-10.03	12.97	62.68	-47.23
o s	[17]	Reduction in UW Result	n/a	93%; -69.6	79%; -59.2	127%; -95.3	79%; -58.9	96%; -71.7	106%; -79.3
Calculated metrics	[18]	Reduction in Volatility	n/a	24%; -66	24%; -64.1	25%; -68.7	23%; -63.9	25%; -68.3	26%; -69.4
lc.	[19]	Reduction in Volatility / Reduction in UW Result ([18]/[17])	n/a	0.95	1.08	0.72	1.09	0.95	0.88
Ca	[20]	Change in TVar / Cost of Reinsurance (-∆[13]/[14])	n/a	0.89	1.06	0.61	1.16	1.11	0.85
A-77	[21]	Expected Insurer's Deficit (-[13]/[3]/[7])	3.6%	4.1%	3.8%	4.9%	3.7%	3.7%	4.2%

UWResult for specific Return Periods (downside)

- How much volatility is reduced for each dollar of underwriting income sacrificed
- Higher is better

ZURICH

Reduction in Volatility/Reduction in UWResult

- How much TVaR is reduced for each dollar spent on Reinsurance
 - Cost of Reinsurance includes premium and expected recoveries
- Higher is better

Change in TVar / Cost of Reinsurance

- Average underwriting loss if underwriting income is negative times the probability of being negative divided by net subject premium
- Lower is better.

Expected Insurer's Deficit

	Gross	Option1	Option2	Option3	Option4	Option5	Option6
Return = Mean	74,979,609	5,378,489	15,799,400	-20,288,219	16,053,221	3,251,325	-4,291,907
Risk = Standard Deviation	272,130,823	206,084,708	208,031,109	203,466,011	208,192,026	203,807,418	202,692,845
(1) Gross Risk - Option Risk		66,046,115	64,099,714	68,664,812	63,938,797	68,323,405	69,437,978
(2) Gross Return - Option Retu	rn	69,601,121	59,180,209	95,267,828	58,926,388	71,728,285	79,271,516
(3) Risk/Return Trade-off Ratio = (1)/(2)		94.9%	108.3%	72.1%	108.5%	95.3%	87.6%

Conclusions

- Reinsurance purchases can be optimized
- Part of a consistent strategy
- Retentions based on position of the overall firm
- Metrics based on strategic direction of the firm
- Watch what metrics measure
- Tool for decision making, not substitute