# PODRA - PillarOne Dynamic Reinsurance Analysis



Jörg Dittrich, Munich Re



### Content



- PillarOne
  - Goals
  - Project
  - Open-source
  - Sponsorship
- PODRA PillarOne Dynamic Reinsurance Analysis
  - Modeling
  - Data requirements
  - Calibration
  - Risk mitigation instruments
  - Evaluation

### What is behind PillarOne? A platform for risk management



PillarOne is

- a risk-analysis platform providing decision-making support for risk management,
- compatible with process and audit requirements of an insurance company,

### and supports

| Processes              | Tasks                    |      |
|------------------------|--------------------------|------|
| Segmentation/modelling | Customising models       | tion |
| Calibration            | Integrating company data | enta |
| Analysis               | Determining risk metrics | sume |
| Presentation           | Processing results       | Doc  |

# Integrating risk management into corporate processes

Risk-oriented methods are at the core of insurance business

- Customised processes can provide competitive advantages.
- The processes reference standardised and customised actuarial methods.

PillarOne will

- encompass standardised methods as well as incorporating customised methods,
- and support the required documentation processes.





Different options to estimate the SCR – PillarOne provides solutions for Solvency II





### What drives PillarOne?

Risk Management meets Open Source

PillarOne is driven by

- a community for exchanging concepts and methods and for discussing issues concerning enterprise risk management
- economic and regulatory
   requirements to build risk
   management applications
- a spirit of sharing open source



# The PillarOne community: realise your ideas!



#### **Observers:**

Registered users: 150 (Insurers, reinsurers, media, associations, consultants, regulators, universities)

#### Active members:

4 test cases, 1 co-sponsor (events)

#### Core members/ Committers: 14 at present

- Intuitive Collaboration
- Canoo Engineering
- Munich Re



- Transparency is an asset in risk management: actuaries, consultants, risk managers, and regulators should know how things are done.
- An open, collaborative process is the best way to empower users to shape products.
- Open-source methodology and technology allows the broadest form of collaboration; there are no barriers to contributing ideas.
- It represents a new attitude towards intellectual property: accessing it is free, but delivering it costs (commercial open-source).
- It encourages a service-providing ecosystem.
- PillarOne means: independence from a single provider.



"As the initiator and main sponsor of PillarOne, Munich Re supports specialised and medium-sized insurance companies to optimise their risk management, as it is very costly for such companies to build up their own internal models."

"Munich Re feels that the standard model does not adequately take reinsurance into account in the Solvency II context. We see the greatest potential for improving standards of specialised and medium-sized insurance companies in the logic of the open-source platform. With PillarOne, Munich Re can directly address such companies and offer them customised consultation as well as reinsurance capacity."

# The focus on (partial) internal models in the insurance industry





Dynamic Reinsurance Analysis using PillarOne gives options to answer risk specific questions



- What is my overall annual risk situation?
- What are my main risk drivers?
- What is the overall capital requirement of the assumed insurance policies?
- How can we allocate the overall capital requirements to individual policies?
- What is the capital relief of our reinsurance policy?
- What is our SCR under Solvency II regulation?

A model is needed to answer this questions: **PODRA** 

### The five steps of Dynamic Reinsurance Analysis





# The five steps of Dynamic Reinsurance Analysis Modeling





# Modeling: based on a elaborate discussion of the business

- Specify of result variables and key risk indicators
- Segmentation of the Business (Lines of Business, Perils, ...)
- Assign model components to the segments
- Consider diverse loss components for attritional, large and catastrophic losses according to different perils
- Allowance for special features of the business
- Consider dependency structures
- Define embeddable reinsurance structures





### PillarOne Dynamic Reinsurance Analysis

### Modeling: Definition of Result Variables What can the model be used for?

- What risk information do we require for steering purposes?
- What risk information do we use to fulfill the requirements of the regulatory regime / the regulator?
- Should the modeling reflect future developments like Solvency II?

Options for Result Variables:

- Annual aggregated loss (gross and net retained)
- Results (net premium net losses + commissions)

Options for (Risk) Measures on Result Variables:

- Expected Value
- Value at Risk at the 99.5% confidence level

Agreement on possible results should be reached





## Capital Eagle: The P&C insurer Are we prepared for modeling

- Founded in 1998 by
  - N. Kuschel, CEO, COO and Reinsurance Manager
  - A. Majidi, CRO and Chief Actuary
- Consultants
  - J. Dittrich, Project Manager, Munich Re
  - L. Berthaut, Consultant, Munich Re

• On Capital Eagle refer to Munich Re Knowledge Series:

### http://www.munichre.com/publications/302-05823\_en.pdf





### Capital Eagle Definition of Result Variables



Result Variables:

- Annual aggregated loss (gross and net retained)
- Results (net premium net losses + commissions)

Measures on Result Variables:

- Expected Value
- Value at Risk at the 99.5% confidence level
- Standard Deviation

Agreement on results reached

# Capital Eagle Modeling of Property Business



- Property Attritional Loss Distribution Mean Std Large Loss Household x0 Frequency lambda Severity alpha Small Commercial x0 Frequency lambda Severity alpha Storm x0 Frequency lambda Severity CatLoss Earthquake x0 Frequency lambda Severity CatLoss
- Segment: Property
- Attritional Loss: Aggregate Distribution
- Large Loss separeted for Household and Small Commercial losses
- Frequency / Severity approach
- Natural Perils: Storm and Earthquake
- Frequency / Severity derived from exposure based analysis

### Capital Eagle The Model in PillarOne



```
package models.capitalEagle
```

```
import org.pillarone.modelling.domain.lob.ExampleLob
import org.pillarone.modelling.simulation.Model
import org.pillarone.modelling.domain.lob.PropertyLob
import org.pillarone.modelling.domain.aggregators.ClaimsAggregator
class CapitalEagleModel extends Model {
    ExampleLob mtpl
    ExampleLob motorHull
    ExampleLob personalAccident
    PropertyLob property
   ClaimsAggregator claimsAggregator
    . . .
   public void wireComponents() {
        claimsAggregator.inClaimsGross = mtpl.subRiProgram.outClaimsGross
        claimsAggregator.inClaimsGross = motorHull.subRiProgram.outClaimsGross
        claimsAggregator.inClaimsGross = personalAccident.subRiProgram.outClaimsGross
        claimsAggregator.inClaimsGross = property.subRiProgram.outClaimsGross
        claimsAggregator.inClaimsCeded = mtpl.subRiProgram.outClaimsCeded
```

```
claimsAggregator.inClaimsCeded = motorHull.subRiProgram.outClaimsCeded
```

```
claimsAggregator.inClaimsCeded = personalAccident.subRiProgram.outClaimsCeded
```

claimsAggregator.inClaimsCeded = property.subRiProgram.outClaimsCeded

### The five steps of Dynamic Reinsurance Analysis Data requirements





## Data requirements What is necessary to get the model running?



- Model structure defined and proposed
- What parameter set can be derived from the model structure?
- Are parameter fitting and calibration methods identified?
- What data requirements do the fitting and calibration methods have?



### Data requirements Detailed specification

The following data are required for a PODRA:

- completed QIS4 Sheet\*
- Definition of segments to be analysed (lines of business, LoBs)
- Segment specific information (see next slide)
- Reinsurance structure in place
- Risks usually ceded facultatively
- Known alternative reinsurance structures





<sup>\*</sup> optional: for calculation of Solvency II key figures

## Data requirements: Detailed specification Segment specific information

Data requirements for a segment to be modelled in PODRA

- Segment information in line with QIS4 Sheet \*
- Premium statistics (calendar year or underwriting year with run-off)
- Aggregate loss amounts per LoB (run-off triangles/ calendar year losses)
- Individual loss amounts per LoB and occurrence year (incl. runoff/calendar year)
- Accumulation loss amounts per LoB and accident year (incl. runoff/calendar year) allocated on hazard
- Accumulation exposures as per e.g. CRESTA/Results of an accumulation risk analysis

\* optional: for calculation of Solvency II key figures





Capital Eagle: Drawbacks from data requirements on the model



|                                                                      | Data required                                                         |                                       |
|----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------|
|                                                                      | <ul> <li>Loss lists with<br/>qualifier</li> </ul>                     |                                       |
| Large Loss<br>Household                                              | <ul> <li>Household</li> </ul>                                         |                                       |
| x0 Poisson<br>Frequency Poisson<br>Iambda Severity Pareto<br>alpha I | <ul> <li>Small Commercial</li> </ul>                                  | Large Loss<br>x0<br>Frequency Poisson |
| Small Commercialx0FrequencyPoissonlambdaSeverityParetoalpha          | <ul><li>Data available</li><li>Loss lists without qualifier</li></ul> | Severity Pareto<br>alpha              |
|                                                                      |                                                                       | -                                     |
| Model s                                                              | implified due to restriction in ava                                   | ailable data                          |

### The five steps of Dynamic Reinsurance Analysis Calibration





# Calibration: Which is the best parametrization for our model?





#### Calibration

- Distribution
  - Type assumption
- Parameter estimation
  - Mean
  - Standard deviation
  - Skewness
- Confidence ranges
  - Mean in Intervall [a,b] at 95% probability cannot be rejected



### Calibration Detailed specification

Data are linked with models

- Parameter estimates of models based on statistics
- Simulations with external nat cat tools
- Parameter estimates of models from nat cat simulations
- Adjustment of dependencies (optional)
- Simulation and plausibility test





# Capital Eagle: Estimation of parameters by moment matching



| Premium | Loss Ratio |
|---------|------------|
| 35.515  | 50,15%     |
| 39.482  | 56,49%     |
| 42.822  | 58,89%     |
| 42.402  | 60,15%     |
| 32.315  | 51,30%     |
| 31.509  | 52,54%     |
| 26.200  | 45,47%     |
| 29.358  | 51,20%     |
| 30.322  | 53,61%     |
| 30.401  | 54,24%     |
| 29.967  | 53,93%     |
| 26.380  | 48,57%     |
| 24.064  | 46,04%     |

| Calibration                                                       |
|-------------------------------------------------------------------|
| $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$                      |
| $\hat{\sigma} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$ |

| Property |               |              |         |
|----------|---------------|--------------|---------|
|          | Attritional L | oss          |         |
|          |               | Distribution | LogNorm |
|          |               | Mean         | 0,5251  |
|          |               | Std          | 0,0444  |
|          |               |              |         |
|          |               |              |         |
|          |               |              |         |
|          |               |              |         |
|          |               |              |         |
|          |               |              |         |
|          |               |              |         |

### The five steps of Dynamic Reinsurance Analysis Risk mitigation instruments





## Risk Mitigation Representation of reinsurance

- Representation of current reinsurance program structure (LoBs, treaty reins. structures)
- Parametrisation of treaties
- Consideration of reinsurance premiums and determination of a premium calculation principle
- Optional: Definition of alternative reinsurance structures and parameters
- Calculation of reinsurance premiums equivalent to those used for current reinsurance structure





## Capital Eagle Reinsurance program alternatives





The solvency capital is calculated based on four different reinsurance programmes.

### Capital Eagle Property Reinsurance in PillarOne



```
subRiProgram {
     subContract1 {
         parmContractStrategy[0]=...getContractStrategy(...ReinsuranceContractType.WXL,
               ["premiumBase":...PremiumBase.ABSOLUTE, "premium":800000.0, "reinstatementPremiums":new
              ...TableMultiDimensionalParameter([0.5],["Reinstatement
              Premium"]), "attachmentPoint":1000000.0, "limit":4.2E7, "aggregateLimit":5.0E7, "covere
              dByReinsurer":1.0,])
         parmInuringPriority[0]=0
    subContract2 {
         parmContractStrategy[0]=...ReinsuranceContractStrategyFactory.getContractStrategy(...Reinsur
              anceContractType.QUOTASHARE,
              ["quotaShare":0.5,"commission":0.0,"coveredByReinsurer":0.0,])
         parmInuringPriority[0]=1
     subContract3 {
         parmContractStrategy[0]=...ReinsuranceContractStrategyFactory.getContractStrategy(...Reinsur
              anceContractType.STOPLOSS,
              ["premiumBase":...PremiumBase.ABSOLUTE, "premium":100000.0, "attachmentPoint":3.3960398
              E7,"limit":1.01881194E8,"coveredByReinsurer":1.0,])
         parmInuringPriority[0]=2
```

### The five steps of Dynamic Reinsurance Analysis Evaluation





#### \* optional: only when QIS4 sheet completed

### Result presentation Detailed specification

- Preparation of information on the risk situation of the gross portfolio
- Description of risk situation under current reinsurance cession
- Details on the risk situation under alternative reinsurance structures
- Cost-benefit analysis of reinsurance structures
- Optional: Representation of results in line with Solvency II (QIS4)





### Capital Eagle Loss distributions: gross vs. net





### Capital Eagle Risk measures



| CapitalEagle      | gross       |             |              |              |                |            |
|-------------------|-------------|-------------|--------------|--------------|----------------|------------|
|                   | premium     | loss        |              |              |                |            |
|                   |             |             |              | RBC          |                |            |
|                   |             | expectation | st-deviation | (VaR99,5)    | RBC/expected R | BC/P Quote |
| Total             | 386.627.763 | 327.225.859 | 30.895.803   | 123.709.652  | 2 37,8%        | 32,0%      |
| Diversification   | C           | 0 0         | -23.058.852  | -114.493.888 | -35,0%         |            |
| Property          | 72.939.000  | 52.584.426  | 21.538.236   | 100.979.108  | 192,0%         | 138,4%     |
| Personal Accident | 27.432.763  | 22.934.395  | 5.006.388    | 16.059.549   | 70,0%          | 58,5%      |
| MotorLiability    | 189.242.000 | 170.917.303 | 20.323.717   | 96.438.041   | 56,4%          | 51,0%      |
| MotorHull         | 97.014.000  | 80.789.735  | 7.086.314    | 24.726.843   | 30,6%          | 25,5%      |

| CapitalEagle      | net         |             |              |             |                     |             |
|-------------------|-------------|-------------|--------------|-------------|---------------------|-------------|
|                   | premium     | loss        |              |             |                     |             |
|                   |             |             |              | RBC         |                     |             |
|                   | -commission | expectation | st-deviation | (VaR99,5)   | <b>RBC/expected</b> | RBC/P Quote |
| Total             | 242.368.717 | 158.557.732 | 13.280.990   | 52.506.388  | 33,1%               | 21,7%       |
| Diversification   | 0           | 0           | -9.446.802   | -32.875.530 | -20,7%              |             |
| Property          | 44.524.335  | 26.292.213  | 10.769.118   | 50.489.554  | 192,0%              | 113,4%      |
| Personal Accident | 37.254.437  | 11.123.636  | 2.433.673    | 7.963.240   | 71,6%               | 21,4%       |
| MotorLiability    | 105.000.924 | 81.830.311  | 6.875.267    | 19.634.347  | 24,0%               | 18,7%       |
| MotorHull         | 55.589.022  | 39.311.572  | 2.649.734    | 7.294.777   | 18,6%               | 13,1%       |

### Capital Eagle: Risk situation RBC gross vs. net





The effects of reinsurance are made obvious

## Capital Eagle Motor Liability gross vs. net





- Risk mitigation reached by program structure
  - Attritional loss ratio fluctuation reduced by quota share
  - Large loss fluctuation reduced by Risk Excess of Loss

|                 |                 |             |              |               |              | · · · · · · · · · · · · · · · · · · · |
|-----------------|-----------------|-------------|--------------|---------------|--------------|---------------------------------------|
| CapitalEagle    | Motor Liability |             |              |               |              |                                       |
|                 | premium         | loss        |              |               |              |                                       |
|                 | -commission     | expectation | st-deviation | RBC (VaR99,5) | RBC/expected | RBC/P Quote                           |
| Gross           | 189.242.000     | 170.917.303 | 20.323.717   | 96.438.041    | 56%          | 51,0%                                 |
| Diversification | C               | C           | -3.871.561   | -18.213.501   |              |                                       |
| Net             | 105.000.924     | 81.830.311  | 6.875.267    | 19.634.347    | 24%          | 18,7%                                 |
| Quota Share     | 78.819.293      | 85.458.652  | 10.161.859   | 48.219.020    | 56%          | 61,2%                                 |
| Risk XL         | 5.421.783       | 3.628.341   | 7.158.152    | 46.798.175    | 1290%        | 863,2%                                |
|                 |                 |             |              |               |              |                                       |

## Capital Eagle Motor Hull gross vs. net





- Risk mitigation reached by program structure
  - Attritional loss ratio fluctuation reduced by quota share
  - Large loss fluctuation reduced by Catastrophe Excess of Loss

| CapitalEagle    | Motor Hull  |             |              |               |              |             |
|-----------------|-------------|-------------|--------------|---------------|--------------|-------------|
|                 | premium     | loss        |              |               |              |             |
|                 | -commission | expectation | st-deviation | RBC (VaR99,5) | RBC/expected | RBC/P Quote |
| Gross           | 97.014.000  | 80.715.004  | 7.049.173    | 24.615.435    | 30%          | 25,4%       |
| Diversification | C           | 0           | -1.234.875   | -4.654.614    |              |             |
| Net             | 55.589.022  | 39.290.357  | 2.653.846    | 7.301.305     | 19%          | 13,1%       |
| Quota Share     | 39.339.177  | 40.357.502  | 3.524.587    | 12.307.718    | 30%          | 31,3%       |
| Risk XL         | 2.085.801   | 1.067.145   | 2.105.616    | 9.661.026     | 905%         | 463,2%      |
|                 |             |             |              |               |              |             |

### Capital Eagle Motor Hull gross vs. net





## Capital Eagle Property gross vs. net





- Quota Share not sufficient in Property (compared to other Lines of business)
- Further discussion required

| CapitalEagle    | Property      |            |               |               |              |             |
|-----------------|---------------|------------|---------------|---------------|--------------|-------------|
|                 | Prämie        | Schaden    |               |               |              |             |
|                 | + Provisionen | Erwartung  | St-Abweichung | RBC (VaR99,5) | RBC/EW Quote | RBC/P Quote |
| Gross           | 72.939.000    | 52.584.426 | 21.538.236    | 100.979.108   | 192%         | 138,4%      |
| Diversification | C             | 0 0        | C             | C             |              |             |
| Net             | 48.623.355    | 26.292.213 | 10.769.118    | 50.489.554    | 192%         | 103,8%      |
| Quota Share     | 24.315.645    | 26.292.213 | 10.769.118    | 50.489.554    | 192%         | 207,6%      |
|                 |               |            |               |               |              |             |
|                 |               |            |               |               |              |             |

### Capital Eagle Gross loss in parallel coordinates chart





### Capital Eagle: retained losses of reinsurance alternatives





## Decision support of PODRA Answers provided



| <ul> <li>overall annual risk situation?<br/>capital requirement of the<br/>assumed insurance policies?</li> <li>Expected value of annual<br/>aggregated loss</li> <li>Value at Risk at 99.5%<br/>confidence level</li> </ul> | <ul> <li>main risk drivers?</li> <li>LoB Property standalone VaR<br/>99.5%</li> </ul>                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>allocation of the overall capital requirements to individual policies?</li> <li>LoB Property contributes x% to the overall VaR 99.5%</li> </ul>                                                                     | <ul> <li>capital relief of our reinsurance policy?</li> <li>Expected Value of annual aggregated loss</li> <li>Net Value at Risk at 99.5% confidence level</li> </ul> |



### PODRA – Powered by PillarOne

PODRA (PillarOne Dynamic Reinsurance Analysis) is a service developed by Munich Re to describe and measure underwriting risk in property and casualty insurance.

The method is based on the PillarOne.RiskAnalytics software platform, an opensource software project initiated and sponsored by Munich Re. Project set-up, roadmap, features, software downloads, and other information can be found on the community website www.pillarone.org. All PillarOne applications include an open source software licence (GPL) which provides usage free of charge.

