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Purpose and overview

• Chain ladder
– When is it maximum likelihood and when not?
– When it isn’t, is it close to ML?

• Questions considered in the context of the 
Tweedie family of distributions for chain 
ladder observations
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Framework 
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Framework 

Development period j

Accident 
period i

Observations Yij

Observations can be anything:

•Counts:

•Reported

•Closed 

•Amounts:

•Paid

•Incurred 

Dimension n
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Framework 

Development period j

Accident 
period i

Sij Yij

Incremental 

Cumulative
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Chain ladder model

• Model formulation (due to Mack (1991, 
1993)):
– Assumption CL1: E[Si,j+1 | Si1,Si2…,Sij] = Sijfj, 

independently of i for some set of parameters fj
(age-to-age factors)

– Assumption CL2: Rows of the data triangle 
are stochastically independent, i.e. Yij and Ykl
are independent for i≠k

• NOTE:  chain ladder is distribution free
– No assumption about distribution of Yij
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Chain ladder estimation

Development period j

Accident 
period i

∑n-j
i=1 Sij

∑n-j
i=1 Si,j+1

Chain ladder estimate 
of age-to-age factor fj
is Fj =

∑n-j
i=1 Si,j+1

∑n-j
i=1 Sij
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A slightly different model

• Assumption CL1: E[Si,j+1 | Si1,Si2…,Sij] = Sijfj, 
independently of i for some set of parameters fj
(age-to-age factors)

• Note that this implies
E[Yij] = αiβj

for parameters αi, βj
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A slightly different model (cont’d)

Chain ladder model

E[Si,j+1 | Si1,Si2…,Sij] = Sijfj

Yij stochastically 
independent as between 
rows of triangle
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A slightly different model (cont’d)

Chain ladder model

E[Si,j+1 | Si1,Si2…,Sij] = Sijfj

Yij stochastically 
independent as between 
rows of triangle

Cross-classified model

E[Yij] = αiβj

Yij stochastically independent 
as between all 
observations
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A slightly different model (cont’d)

Chain ladder model

E[Si,j+1 | Si1,Si2…,Sij] = Sijfj

Yij stochastically 
independent as between 
rows of triangle

Cross-classified model

E[Yij] = αiβj

Yij stochastically independent 
as between all 
observations

Neither model more general than the other
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Distribution of chain ladder 
observations
• We wish to investigate ML estimation for 

chain ladder model
• Need to specify likelihood of the Yij
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Exponential dispersion family 
(EDF)
• Log-likelihood is

ℓ(y;θ,λ) = c(λ)[yθ – b(θ)] + a(y,λ)
for some functions a(.,.), b(.) and c(.) and 
parameters θ and λ

• May be shown that
μ = E[Y] = b'(θ) 

Var[Y] = b''(θ)/c(λ)
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Tweedie family of distributions
• EDF log-likelihood:

ℓ(y;θ,λ) = c(λ)[yθ – b(θ)] + a(y,λ)
• A subset of the EDF is obtained by means of the 

following restrictions:
c(λ) = λ

Var [Y] = μp/λ, p≤0 or p≥1
• This restricts the log-likelihood to

ℓ(y;θ,λ) = λ[yθ – b(θ)] + a(y,λ)
with the 2nd restriction causing a restriction on the form of 

b(θ)
• The Tweedie subset of the EDF is the set of distributions 

used by most GLM regression packages (e.g. SAS 
PROC GENMOD)
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Known members of the 
Tweedie family
ℓ(y;θ,λ) = λ[yθ – b(θ)] + 

a(y,λ)
Var [Y] = μp/λ

• Special cases

p Distrib
-ution

b(θ)

0 Normal ½θ2

1 Poisson exp θ

2 Gamma - ln (-θ)

3 Inverse 
Gaussian

- (-2θ)½

(1,2) Compound 
Poisson -
gamma
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Known members of the 
Tweedie family
ℓ(y;θ,λ) = λ[yθ – b(θ)] + 

a(y,λ)
Var [Y] = μp/λ

• Special cases

p Distrib
-ution

b(θ)

0 Normal ½θ2

1 Poisson exp θ

2 Gamma - ln (-θ)

3 Inverse 
Gaussian

- (-2θ)½

(1,2) Compound 
Poisson -
gamma

NOTE: For case p=1
Var [Y] = μ/λ

which is more general than 
Poisson (Var [Y] = μ)

This distribution is called over-
dispersed Poisson (ODP)
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MLE for Tweedie data
• Model form

– Cross-classified model with Tweedie distributed 
observations

– Slightly generalised variance
Var [Yij] = μij

p/λwij
where wij is new and is the weight associated with Yij

MLE equations are:
∑R(i) wij μij

1-p [yij – μij] = 0, i=1,…,n
∑C(j) wij μij

1-p [yij – μij] = 0, j=1,…,n 
where 
∑R(i) denotes summation over the entire row i of the 

triangle
∑C(j) denotes summation over the entire column j
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MLE for Tweedie data (cont’d)

Development period j

Accident 
period i

Dimension n

wij μij
1-p [yij – μij]

Sums of these quantities over all 
rows and columns set to zero

This is a marginal sum method 
of estimation



19

MLE for Tweedie data – Special 
case 1
• MLE equations

∑R(i) wij μij
1-p [yij – μij] = 0, i=1,…,n

∑C(j) wij μij
1-p [yij – μij] = 0, j=1,…,n 

• Special case p=wij=1 (over-dispersed Poisson 
Yij)

∑R(i) [yij – μij] = 0, i=1,…,n
∑C(j) [yij – μij] = 0, j=1,…,n 

• The solution to this system is known to be chain 
ladder (Hachemeister & Stanard, 1975)
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MLE for Tweedie data – Special 
case 2
• MLE equations

∑R(i) wij μij
1-p [yij – μij] = 0, i=1,…,n

∑C(j) wij μij
1-p [yij – μij] = 0, j=1,…,n 

• Special case p=2 (gamma Yij)
∑R(i) wij [yij / μij -1] = 0, i=1,…,n
∑C(j) wij [yij / μij -1] = 0, j=1,…,n 

• The solution to this system was studied by 
Mack (1991)
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MLE for Tweedie data – chain 
ladder as a limiting case
• It may be shown that the chain ladder 

approximates the solution to the Tweedie 
cross-classified model if any of the 
following conditions holds:
– Observation variances are small
– p is close to 1

• compound (over-dispersed) Poisson with gamma 
severity with low coefficient of variation)

– Weights wij μij
1-p vary little over the triangle
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MLE for Tweedie data –
multiplicative weights
• MLE equations

∑R(i) wij μij
1-p [yij – μij] = 0, i=1,…,n

∑C(j) wij μij
1-p [yij – μij] = 0, j=1,…,n 

• Consider case of multiplicative weights
wij = ui vj

• Recall 
μij = αiβj
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MLE for Tweedie data –
multiplicative weights
• MLE equations

∑R(i) wij μij
1-p [yij – μij] = 0, i=1,…,n

∑C(j) wij μij
1-p [yij – μij] = 0, j=1,…,n 

• Consider case of multiplicative weights
wij = ui vj

• Recall 
μij = αiβj

• Hence
∑R(i) [wij μij

1-p yij – wij μij
2-p] = 0, i=1,…,n

∑C(j) [wij μij
1-p yij – wij μij

2-p] = 0, j=1,…,n 

∑R(i) [zij – ξij] = 0, i=1,…,n
∑C(j) [zij – ξij] = 0, j=1,…,n 

with
Zij = wij μij

1-p Yij
ξij = wij μij

2-p = [uiαi
2-p] [vjβj

2-p] = ai bj
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MLE for Tweedie data –
multiplicative weights

∑R(i) [zij – ξij] = 0, i=1,…,n
∑C(j) [zij – ξij] = 0, j=1,…,n 

with
Zij = wij μij

1-p Yij
ξij = [uiαi

2-p] [vjβj
2-p] = ai bj

• Note that these are chain ladder equations for 
observations Zij and parameters ai, bj

• But solution of chain ladder requires fore-
knowledge of μij which are targets of estimation

• Solution proceeds by iteration
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MLE for Tweedie data – numerical 
solution for multiplicative weights
• Chain ladder on 

– Observations Zij = wij μij
1-p Yij [μij = αiβj]

– With expectations ξij = [uiαi
2-p] [vjβj

2-p] = ai bj

• In r-th iteration, apply chain ladder 
estimation to
– Observations Z(r)

ij = wij (μ(r)
ij)1-p Yij [μ(r)

ij = 
α(r)

iβ(r)
j]

– With expectations ξ (r)
ij = 

[ui(α(r+1)
i)2-p] [vj(β(r+1)

j)2-p] = a(r+1)
i b(r+1)

j

• This produces new estimates a(r+1)
i, b(r+1)

j
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MLE for Tweedie data – numerical 
solution for multiplicative weights

Actual variables

Diagrammatically 

Yij

E[Yij] = αi βj
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MLE for Tweedie data – numerical 
solution for multiplicative weights

Actual variables Transformed variables

Diagrammatically 

Z(r)
ij = wij (μ(r)

ij)1-p Yij

E[Z(r)
ij] = a(r+1)

i b(r+1)
j

Yij

E[Yij] = αi βj
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MLE for Tweedie data – numerical 
solution for multiplicative weights

Actual variables Transformed variables

Chain ladder solution for 
a(r+1)

i, b(r+1)
j

Diagrammatically 

Z(r)
ij = wij (μ(r)

ij)1-p Yij

E[Z(r)
ij] = a(r+1)

i b(r+1)
j

Yij

E[Yij] = αi βj
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MLE for Tweedie data – numerical 
solution for multiplicative weights

Actual variables

α(r+1)
i, β(r+1)

j

Transformed variables

Chain ladder solution for 
a(r+1)

i, b(r+1)
j

Diagrammatically 

Z(r)
ij = wij (μ(r)

ij)1-p Yij

E[Z(r)
ij] = a(r+1)

i b(r+1)
j

Yij

E[Yij] = αi βj

ai = uiαi
2-p

bi = uiβi
2-p
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MLE for Tweedie data – numerical 
solution for multiplicative weights

Actual variables

α(r+1)
i, β(r+1)

j

μ(r+1)
ij = α(r+1)

iβ(r+1)
j

Transformed variables

Chain ladder solution for 
a(r+1)

i, b(r+1)
j

Diagrammatically 

Z(r)
ij = wij (μ(r)

ij)1-p Yij

E[Z(r)
ij] = a(r+1)

i b(r+1)
j

Yij

E[Yij] = αi βj

ai = uiαi
2-p

bi = uiβi
2-p
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MLE for Tweedie data – numerical 
solution for multiplicative weights

Actual variables

α(r+1)
i, β(r+1)

j

μ(r+1)
ij = α(r+1)

iβ(r+1)
j

Transformed variables

Chain ladder solution for 
a(r+1)

i, b(r+1)
j

Diagrammatically 

Z(r)
ij = wij (μ(r)

ij)1-p Yij

E[Z(r)
ij] = a(r+1)

i b(r+1)
j

Yij

E[Yij] = αi βj

ai = uiαi
2-p

bi = uiβi
2-p
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MLE for Tweedie data – numerical 
solution for multiplicative weights
• This iterative procedure converges quickly for 

small values of p 
– Shorter tailed distributions
– Converges in a single iteration for p=1

• Converges more slowly as p increases
• Recall that 1<p<2 for compound Poisson 

observations
• Numerical experiment requiring convergence to 

accuracy of 0.05% in loss reserve:
– p=2 (gamma): 5 iterations 
– p=2.4 (fairly long tailed): 24 iterations
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Practical implications

• The chain ladder (with multiplicative weights 
wij=uivj) will give MLE for p=1

• For compound Poisson cells of the triangle 
1<p<2, and the chain ladder is not MLE

• The difference from MLE increases with p
• Larger p means more extreme variance for large 

mean values (Var[Yij] = μp/λ)
• In practice one needs to consider the likely value 

of p in this relation in deciding whether or not the 
chain ladder is likely to produce efficient 
estimates (and forecasts)


