

100% GreenPow

The chain ladder and Tweedie distributed claims data

Greg Taylor

Taylor Fry Consulting Actuaries University of Melbourne University of New South Wales

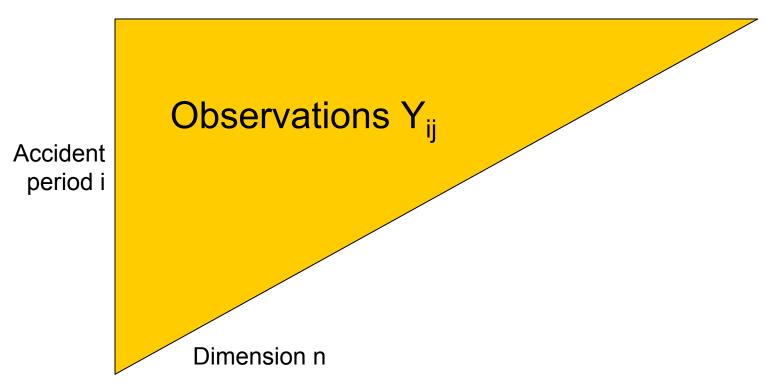
Casualty Actuarial Society Spring Meeting 3-6 May 2009, New Orleans

Purpose and overview

- Chain ladder
 - When is it maximum likelihood and when not?
 - When it isn't, is it close to ML?
- Questions considered in the context of the Tweedie family of distributions for chain ladder observations

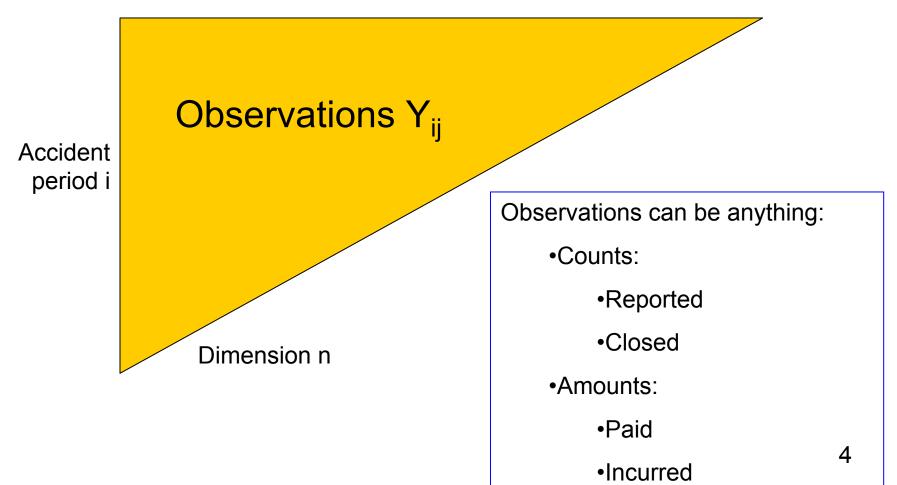
Framework

Development period j



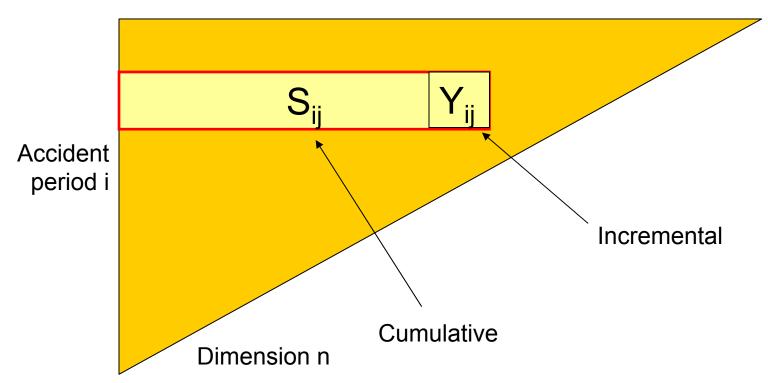
Framework

Development period j



Framework

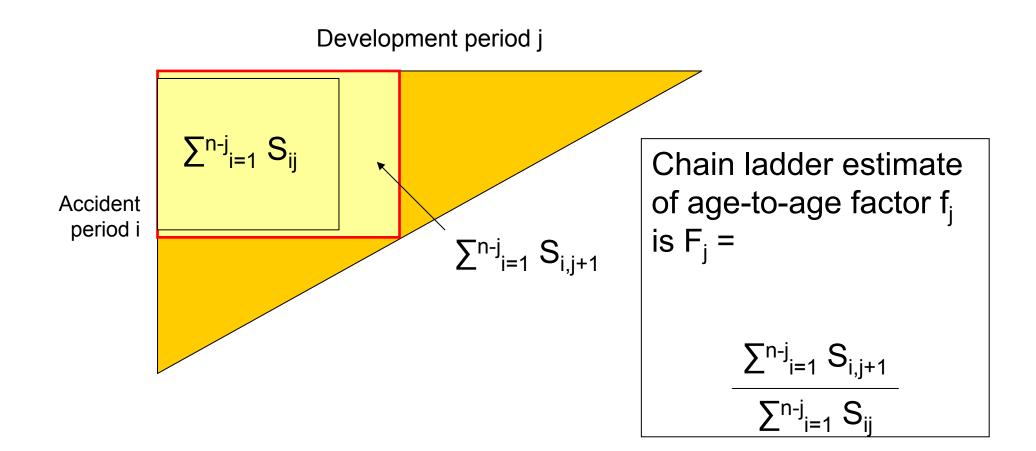
Development period j



Chain ladder model

- Model formulation (due to Mack (1991, 1993)):
 - Assumption CL1: $E[S_{i,j+1} | S_{i1}, S_{i2}, ..., S_{ij}] = S_{ij}f_j$, independently of i for some set of parameters f_j (age-to-age factors)
 - Assumption CL2: Rows of the data triangle are stochastically independent, i.e. Y_{ij} and Y_{kl} are independent for i≠k
- NOTE: chain ladder is distribution free
 No assumption about distribution of Y_{ii}

Chain ladder estimation



A slightly different model

- Assumption CL1: E[S_{i,j+1} | S_{i1}, S_{i2}..., S_{ij}] = S_{ij}f_j, independently of i for some set of parameters f_j (age-to-age factors)
- Note that this implies

 $E[Y_{ij}] = \alpha_i \beta_j$

for parameters α_i , β_i

Chain ladder model

 $E[S_{i,j+1} | S_{i1}, S_{i2}, ..., S_{ij}] = S_{ij}f_j$

Y_{ij} stochastically independent as between rows of triangle

A slightly different model (cont'd)

Chain ladder model

Cross-classified model

 $E[S_{i,j+1} | S_{i1}, S_{i2}, ..., S_{ij}] = S_{ij}f_j$

 $E[Y_{ij}] = \alpha_i \beta_j$

Y_{ij} stochastically independent as between rows of triangle Y_{ij} stochastically independent as between all observations

Chain ladder model

Cross-classified model

 $E[S_{i,i+1} | S_{i1}, S_{i2}, ..., S_{ii}] = S_{ii}f_i$

 $E[Y_{ij}] = \alpha_i \beta_i$

Y_{ii} stochastically independent as between rows of triangle

Y_{ii} stochastically independent as between all observations

Neither model more general than the other

Distribution of chain ladder observations

- We wish to investigate ML estimation for chain ladder model
- Need to specify likelihood of the Y_{ii}

Exponential dispersion family Consulting Actuaries (EDF)

- Log-likelihood is

 ℓ(y;θ,λ) = c(λ)[yθ b(θ)] + a(y,λ)
 for some functions a(.,.), b(.) and c(.) and
 parameters θ and λ
- May be shown that

 $\mu = E[Y] = b'(\theta)$ $Var[Y] = b''(\theta)/c(\lambda)$

Tweedie family of distributions

• EDF log-likelihood:

 $\ell(y;\theta,\lambda) = c(\lambda)[y\theta - b(\theta)] + a(y,\lambda)$

• A subset of the EDF is obtained by means of the following restrictions:

c(λ) = λVar [Y] = μ^p/λ, p≤0 or p≥1

• This restricts the log-likelihood to

 $\ell(y;\theta,\lambda) = \lambda[y\theta - b(\theta)] + a(y,\lambda)$

with the 2^{nd} restriction causing a restriction on the form of $b(\theta)$

 The Tweedie subset of the EDF is the set of distributions used by most GLM regression packages (e.g. SAS PROC GENMOD)

Known members of the Tweedie family

$$\ell(y;\theta,\lambda) = \lambda[y\theta - b(\theta)] + a(y,\lambda)$$

Var [Y] = μ^{p}/λ

• Special cases

р	Distrib -ution	b(θ)
0	Normal	1∕₂θ²
1	Poisson	ехр Ө
2	Gamma	- In (-θ)
3	Inverse Gaussian	- (-2θ) ^½
(1,2)	Compound Poisson - gamma	15

Known members of the Tweedie family

$$\ell(y;\theta,\lambda) = \lambda[y\theta - b(\theta)] + a(y,\lambda)$$

Var [Y] = μ^{p}/λ

Special cases

NOTE: For case p=1 **Var [Y] = μ/λ**

which is more general than Poisson (Var [Y] = μ)

This distribution is called **overdispersed Poisson (ODP)**

р	Distrib -ution	b(θ)
0	Normal	1∕₂θ²
1	Poisson	ехр Ө
2	Gamma	- In (-θ)
3	Inverse Gaussian	- (-2θ) ^½
(1,2)	Compound Poisson - gamma	16

MLE for Tweedie data

- Model form
 - Cross-classified model with Tweedie distributed observations
 - Slightly generalised variance

Var $[Y_{ij}] = \mu_{ij}^{p} / \lambda w_{ij}$

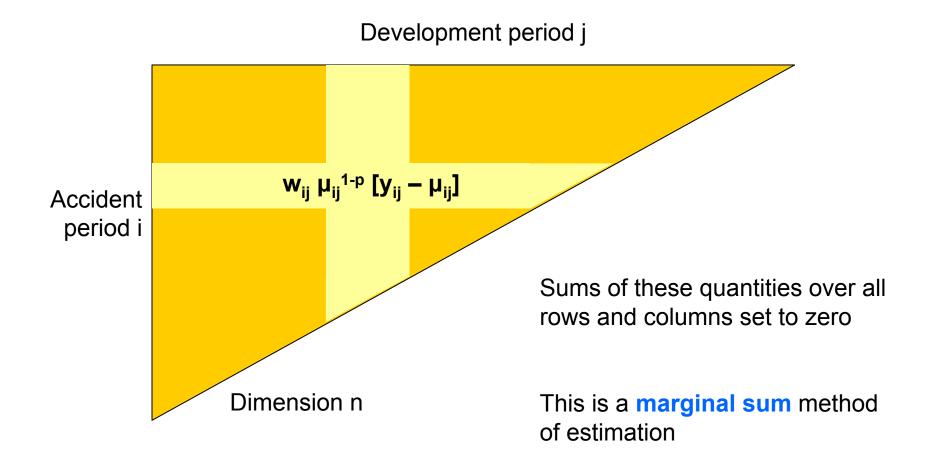
where w_{ij} is new and is the **weight** associated with Y_{ij} MLE equations are:

 $\sum_{i=1}^{R(i)} w_{ij} \mu_{ij}^{1-p} [y_{ij} - \mu_{ij}] = 0, i=1,...,n$ $\sum_{i=1}^{C(j)} w_{ij} \mu_{ij}^{1-p} [y_{ij} - \mu_{ij}] = 0, j=1,...,n$

where

∑^{R(i)} denotes summation over the entire row i of the triangle

 $\sum^{c(j)}$ denotes summation over the entire column j



MLE for Tweedie data – Specie Consulting Actuaries case 1

• MLE equations

$$\sum^{R(i)} w_{ij} \mu_{ij}^{1-p} [y_{ij} - \mu_{ij}] = 0, i=1,...,n$$

$$\sum^{C(j)} w_{ij} \mu_{ij}^{1-p} [y_{ij} - \mu_{ij}] = 0, j=1,...,n$$

 Special case p=w_{ij}=1 (over-dispersed Poisson Y_{ij})

 $\sum_{i=1}^{R(i)} [y_{ij} - \mu_{ij}] = 0, i=1,...,n$ $\sum_{i=1}^{C(j)} [y_{ij} - \mu_{ij}] = 0, j=1,...,n$

 The solution to this system is known to be chain ladder (Hachemeister & Stanard, 1975)

- - $\sum_{i=1}^{R(i)} w_{ij} \left[y_{ij} / \mu_{ij} 1 \right] = 0, i = 1,...,n$ $\sum_{i=1}^{C(j)} w_{ij} \left[y_{ij} / \mu_{ij} - 1 \right] = 0, j = 1,...,n$
- The solution to this system was studied by Mack (1991)

- It may be shown that the chain ladder approximates the solution to the Tweedie cross-classified model if any of the following conditions holds:
 - Observation variances are small
 - p is close to 1
 - compound (over-dispersed) Poisson with gamma severity with low coefficient of variation)
 - Weights $w_{ij} \mu_{ij}^{1-p}$ vary little over the triangle

MLE for Tweedie data – multiplicative weights

• MLE equations

$$\sum_{i=1}^{R(i)} w_{ij} \mu_{ij}^{1-p} [y_{ij} - \mu_{ij}] = 0, i=1,...,n$$

$$\sum_{i=1}^{C(j)} w_{ij} \mu_{ij}^{1-p} [y_{ij} - \mu_{ij}] = 0, j=1,...,n$$

- Consider case of multiplicative weights
- Recall

 $\mu_{ij} = \alpha_i \beta_j$

 $\mathbf{w}_{ij} = \mathbf{u}_i \mathbf{v}_j$

MLE for Tweedie data – multiplicative weights

• MLE equations

- Consider case of multiplicative weights
- Recall

$$\mu_{ij} = \alpha_i \beta_j$$

 $\mathbf{w}_{ij} = \mathbf{u}_i \mathbf{v}_j$

• Hence

$$\sum_{i=1,...,n}^{R(i)} [w_{ij} \ \mu_{ij}^{1-p} \ y_{ij} - w_{ij} \ \mu_{ij}^{2-p}] = 0, \ i=1,...,n$$

$$\sum_{i=1,...,n}^{C(j)} [w_{ij} \ \mu_{ij}^{1-p} \ y_{ij} - w_{ij} \ \mu_{ij}^{2-p}] = 0, \ j=1,...,n$$

$$\sum_{i=1}^{R(i)} [z_{ij} - \xi_{ij}] = 0, i=1,...,n$$

$$\sum_{i=1}^{C(j)} [z_{ij} - \xi_{ij}] = 0, j=1,...,n$$

with

$$Z_{ij} = w_{ij} \mu_{ij}^{1-p} Y_{ij}$$

$$\xi_{ij} = w_{ij} \mu_{ij}^{2-p} = [u_i \alpha_i^{2-p}] [v_j \beta_j^{2-p}] = a_i b_j$$
23

MLE for Tweedie data – multiplicative weights

$$\sum_{i=1}^{R(i)} [z_{ij} - \xi_{ij}] = 0, i=1,...,n$$

$$\sum_{i=1}^{C(j)} [z_{ij} - \xi_{ij}] = 0, j=1,...,n$$

with

$$Z_{ij} = w_{ij} \mu_{ij}^{1-p} Y_{ij}$$

$$\xi_{ij} = [u_i \alpha_i^{2-p}] [v_j \beta_j^{2-p}] = a_i b_j$$

- Note that these are chain ladder equations for observations Z_{ii} and parameters a_i, b_i
- But solution of chain ladder requires foreknowledge of μ_{ii} which are targets of estimation
- Solution proceeds by iteration

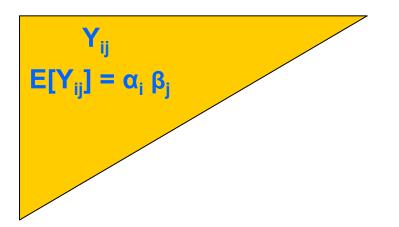
MLE for Tweedie data – numer Taylor Fry

solution for multiplicative weights

- Chain ladder on
 - Observations $Z_{ii} = w_{ii} \mu_{ii}^{1-p} Y_{ii}$ $[\mu_{ii} = \alpha_i \beta_i]$
 - With expectations $\xi_{ij} = [u_i \alpha_i^{2-p}] [v_j \beta_j^{2-p}] = a_i b_j$
- In r-th iteration, apply chain ladder estimation to
 - Observations $Z^{(r)}_{ii} = W_{ii} (\mu^{(r)}_{ii})^{1-p} Y_{ii}$ $[\mu^{(r)}_{ii}] =$ $\alpha^{(r)}_{i}\beta^{(r)}_{i}$
 - With expectations ξ (r)_{ii} = $[u_i(\alpha^{(r+1)}_i)^{2-p}] [v_i(\beta^{(r+1)}_i)^{2-p}] = a^{(r+1)}_i b^{(r+1)}_i$
- This produces new estimates a^(r+1), b^(r+1), j₂₅

Diagrammatically

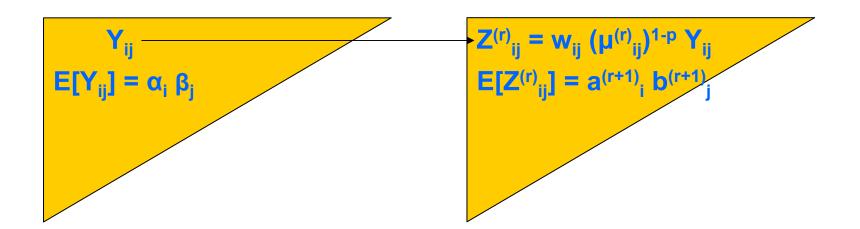
Actual variables



Diagrammatically

Actual variables

Transformed variables

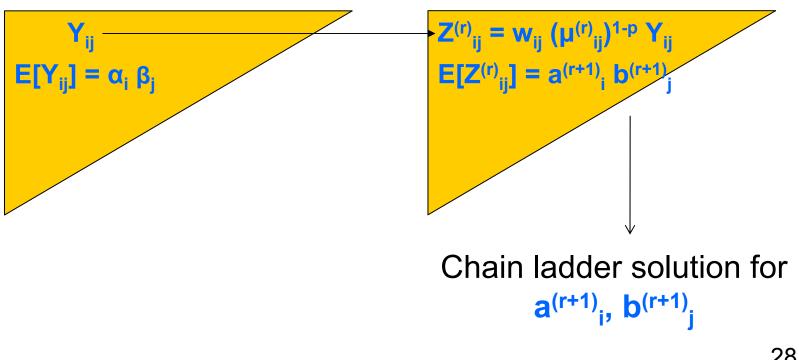


Taylor Fry MLE for Tweedie data – numerica solution for multiplicative weights

Diagrammatically

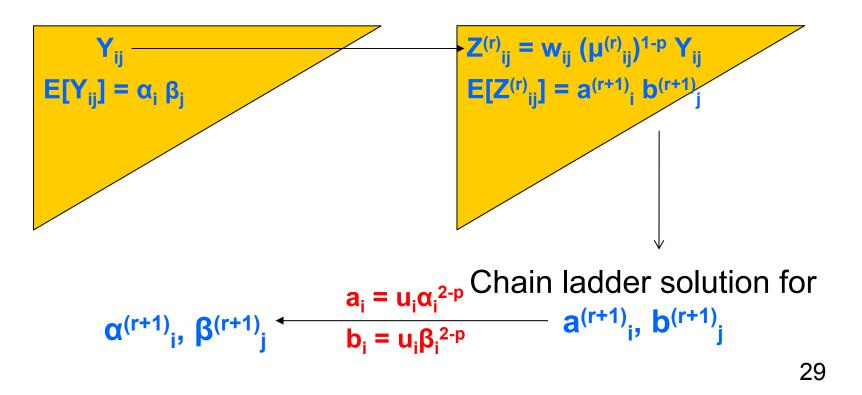
Actual variables

Transformed variables



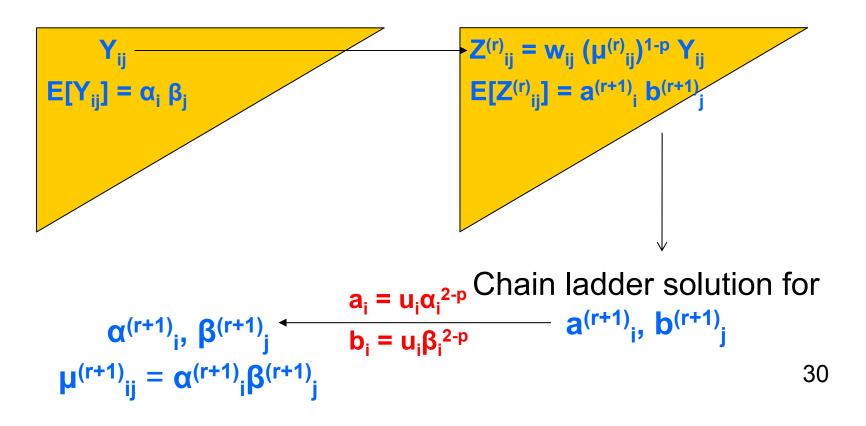
Diagrammatically

Actual variables



Diagrammatically

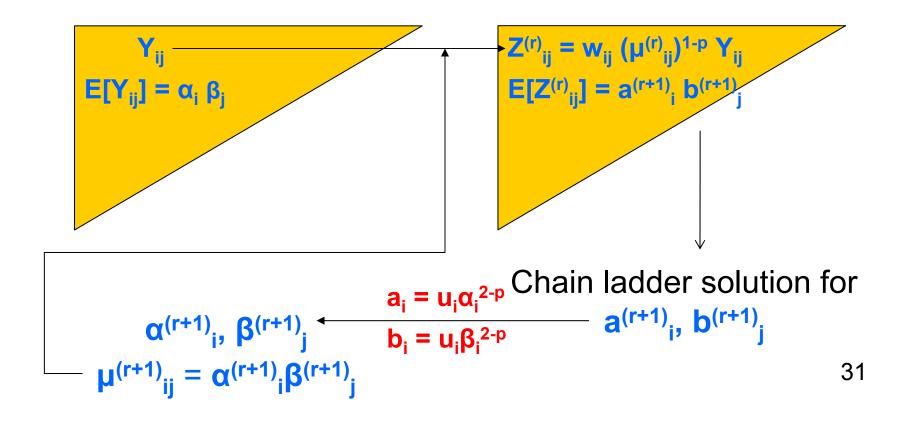
Actual variables



Diagrammatically

Actual variables

Transformed variables



- This iterative procedure converges quickly for small values of p
 - Shorter tailed distributions
 - Converges in a single iteration for p=1
- Converges more slowly as p increases
- Recall that 1<p<2 for compound Poisson observations
- Numerical experiment requiring convergence to accuracy of 0.05% in loss reserve:
 - p=2 (gamma): 5 iterations
 - p=2.4 (fairly long tailed): 24 iterations

Practical implications

- The chain ladder (with multiplicative weights w_{ij}=u_iv_j) will give MLE for p=1
- For compound Poisson cells of the triangle 1<p<2, and the chain ladder is not MLE
- The difference from MLE increases with p
- Larger p means more extreme variance for large mean values (Var[Y_{ij}] = μ^{p}/λ)
- In practice one needs to consider the likely value of p in this relation in deciding whether or not the chain ladder is likely to produce efficient estimates (and forecasts)