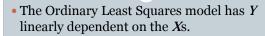
\sim	-		-			
Co	n11	ล	Re	gre	2551	on
-	pa	···	110	<u>ጉ</u> ተነ		OI

RAHUL A. PARSA DRAKE UNIVERSITY

&
STUART A. KLUGMAN
OCIETY OF ACTUARIES

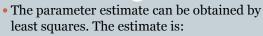
Outline

- Ordinary Least Squares (OLS) Regression
- Generalized Linear Models (GLM)
- Copula Regression
- o Continuous case
- o Discrete Case
- Examples


Notation

- Notation:
- Y Dependent Variable
- $X_1, X_2, \cdots X_k$ Independent Variables
- Assumption
- Expected value of Y is related to X's in some functional form

$$E[Y | X_1 = x_1, ..., X_n = x_n] = f(x_1, x_2, ..., x_n)$$


OLS Regression

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + \varepsilon_i$$

$$\varepsilon_i \square \text{Normal}(0, \sigma^2)$$
 and independent

OLS Regression

$$\hat{Y} = (X'X)^{-1}X'y$$

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \dots + \hat{\beta}_k x_{ki}$$

OLS - Multivariate Normal Distribution

- Assume $Y, X_1, ..., X_k$ jointly follow a multivariate normal distribution. This is more restrictive than usual OLS.
- \bullet Then the conditional distribution of Y | \boldsymbol{X} has a normal distribution with mean and variance given by

$$E(Y \mid X = \underline{x}) = \underline{\mu}_{y} + \sum_{YX} \sum_{XX}^{-1} (\underline{x} - \underline{\mu}_{x})$$

$$Variance = \Sigma_{yy} - \Sigma_{yx} \Sigma_{xx}^{-1} \Sigma_{yx}$$

OLS & MVN

- Y-hat = Estimated Conditional mean
- It is the MLE
- Estimated Conditional Variance is the error variance
- OLS and MLE result in same values
- Closed form solution exists

Generalization of OLS

- Is *Y* always linearly related to the *X*s?
- What do you do if the relationship between is non-linear?

GLM – Generalized Linear Model

- Y/x belongs to the exponential family of distributions and $E(Y | X = \underline{x}) = g^{-1}(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)$
- g is called the link function
- xs are not random
- Conditional variance is no longer constant
- Parameters are estimated by MLE using numerical methods

GLM

- Generalization of GLM: *Y* can have any conditional distribution (See *Loss Models*)
- Computing predicted values is difficult
- No convenient expression for the conditional variance

Copula Regression

- Ycan have any distribution
- Each X_i can have any distribution
- The joint distribution is described by a Copula
- Estimate Y by E(Y/X=x) conditional mean

Copula

Ideal Copulas have the following properties:

- ease of simulation
- closed form for conditional density
- different degrees of association available for different pairs of variables.

Good Candidates are:

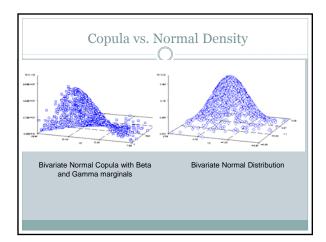
- Gaussian or MVN Copula
- t-Copula

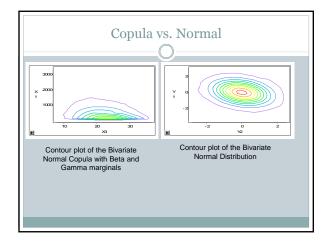
-	

MVN Copula -cdf

- CDF for the MVN Copula is $F(x_1, x_2,...,x_n) = G(\Phi^{-1}[F(x_1)],...,\Phi^{-1}[F(x_n)])$
- where *G* is the multivariate normal cdf with zero mean, unit variance, and correlation matrix *R*.

MVN Copula - pdf


• The density function is


$$f(x_1, x_2, \dots, x_n)$$

=
$$f(x_1)f(x_2)\cdots f(x_n)\exp\left\{-\frac{v^T(R^{-1}-I)v}{2}\right\}*|R|^{-0.5}$$

Where v is a vector with tth element

$$v_i = \Phi^{-1}[F(x_i)]$$

Conditional Distribution in MVN Copula

• The conditional distribution is

$$f(x_{n} | x_{1},...,x_{n-1})$$

$$= f(x_{n}) \exp \left\{ -0.5 \left[\frac{\{\Phi^{-1}[F(x_{n})] - r^{T}R_{n-1}^{-1}v_{n-1}\}^{2}}{(1 - r^{T}R_{n-1}^{-1}r)} - \{\Phi^{-1}[F(x_{n})]\}^{2} \right] \right\}$$

$$\times (1 - r^{T}R_{n-1}^{-1}r)^{-0.5}$$

$$v_{n-1} = (v_{1},...,v_{n-1})$$

$$R = \begin{bmatrix} R_{n-1} & r \\ r^{T} & 1 \end{bmatrix}$$

Copula Regression - Continuous Case

- Parameters are estimated by MLE.
- If $Y, X_1, ..., X_k$ are continuous variables, then we can use the previous equation to find the conditional mean.
- One-dimensional numerical integration is needed to compute the mean.

Copula Regression -Discrete Case
When one of the covariates is discrete
Problem:
 Determining discrete probabilities from the
Gaussian copula requires computing many
multivariate normal distribution function
values and thus computing the likelihood
function is difficult.
ranction is annear.
Consile Degrades Discosts Con
Copula Regression – Discrete Case
<u> </u>
Solution:
Dealer Parate Partitor
 Replace discrete distribution by a
continuous distribution using a uniform
kernel.
Copula Pagraggian Standard Emarg
Copula Regression – Standard Errors
 How to compute standard errors of the
estimates?
• As $n \to \infty$, the MLE converges to a normal
distribution with mean equal to the
parameters and covariance the inverse of the
information matrix.
$\lceil \partial^2 \rceil$
$I(\theta) = -n * E \left \frac{\partial^2}{\partial \theta^2} \ln(f(X, \theta)) \right $
$ \partial \theta^2 $

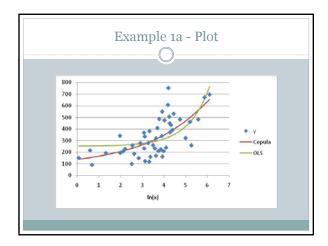
How to compute Standard Errors

- Loss Models: "To obtain the information matrix, it is necessary to take both derivatives and expected values, which is not always easy. A way to avoid this problem is to simply not take the expected value."
- It is called "Observed Information."

Examples

- All examples have three variables simulated using MVN copula
- R Matrix : 1 0.7 0.7 0.7 1 0.7 0.7 0.7 1
- Error measured by $\sum (Y_i \hat{Y}_i)^2$
- Also compared to OLS

Example 1


- Dependent Gamma; Independent both Pareto
- X2 did not converge, used gamma model

Variables	X1-Paret	0	X2-Pareto	X3-Gamma	
Parameters	3, 100		4, 300	3, 100	
MLE	3.44, 161.1	1	1.04, 112.003	3.77, 85.93	
Error:	Copula OLS	59000.5 637172.8			

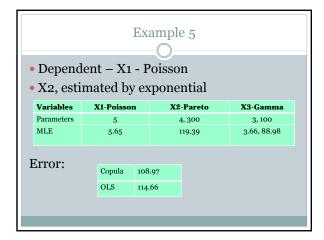
• Diagonal terms are standard deviations and off-diagonal terms are correlations • Diagonal terms • Diagona

• Maxii matri	mum likelil	Example 1	ate of corre	elation
	1	0.711	0.699	
R-hat =	0.711	1	0.713	
	0.699	0.713	1	

Example 1a – Two dimensional
• Only X3 (dependent) and X1 used.
• Graph on next slide (with log scale for x) shows the two regression lines.

• Dependent – $X3$ - Gamma • $X1 \& X2$ estimated empirically (so no mode assumption made) • Variables			Exa	ample	2	
	X1 & X	2 estimat	ted			so no mode
MLE $F(x) = x/n - 1/2n$ $F(x) = x/n - 1/2n$ $F(x) = 1/n$ 4.03, 81.04					areto	X3-Gamma
f(x) = 1/n f(x) = 1/n	Parameters	3, 100		4, 300		3, 100
Error: Copula 595,947.5	MLE					4.03, 81.04
	Error:	Copula	595,	947-5		
OLS 637,172.8	311011		172.8			
GLM 814,264.754		GLM	814.	264 754		

• As noted earlier, when a marginal distribution is discrete MVN copula calculations are difficult.


Example 2 – empirical model

- Replace each discrete point with a uniform distribution with small width.
- As the width goes to zero, the results on the previous slide are obtained.

Example 3 • Dependent – X3 – Gamma • X1 has a discrete, parametric, distribution • Pareto for X2 estimated by Exponential X1-Poisson X2-Pareto Parameters 4, 300 3, 100 MLE 5.65 119.39 3.67, 88.98 • Error: Copula 574,968 OLS 582,459.5

Example 4							
• Dependent – X3 - Gamma							
• X1 & X2 estimated empirically							
• $C = \# \text{ of obs} \le x \text{ and } a = (\# \text{ of obs} = x)$							
Variables	X1-Poisson	X2-Pareto		X3-Gan	ıma		
Parameters	5	4, 300		3, 100	o		
MLE	F(x) = c/n + a/2n $f(x) = a/n$	F(x) = x/n - 1 $f(x) = 1/n$	F(x) = x/n - 1/2n $f(x) = 1/n$.48		
Error:	Copula	OLS		GLM			
	559,888.8	582,459.5	582,459.5 65:				

Once again, a discrete distribution must be replaced with a continuous model. The same technique as before can be used, noting that now it is likely that some values appear more than once.

		Exa	amp	ole 6	
• Depend	lent – Z	X1 - F	ois	son	
• X2 & X			·	•	
Variables	X1-Pois	son		X2-Pareto	X3-Gamma
Parameters	5			4, 300	3, 100
MLE	5.67		F(x	$f(x) = \frac{x}{n} - \frac{1}{2n}$ $f(x) = \frac{1}{n}$	F(x) = x/n - 1/2n $f(x) = 1/n$
Error:	Copula	110.04			
	OLS	114.66			