The Retrospective Testing of Stochastic Loss Reserve Models

Glenn Meyers – FCAS, MAAA, CERA, Ph.D. CAS Spring Meeting May 21,2012

Background

 Risk based capital proposals, e.g. EU Solvency II and USA SMI rely on stochastic models.

– VaR@99.5% and TVaR@99%

 There are many stochastic loss reserve models that claim to predict the distribution of ultimate losses.

Are any of these models right?

E-Forum Paper

Joint with Peng Shi – Northern Illinois University

- Describes a database
 - Data from several American Insurers
 - Data for six lines of insurance
 - Paid and incurred loss triangles
 - Subsequent outcomes
 - Available online (Free)
- Predicts the distribution of outcomes of two models for several insurers for Commercial Auto Insurance
- Tests the predictions against subsequent reported outcomes.

The CAS Loss Reserve Database

- Schedule P (Data from Parts 1-4) for several US Insurers
 - Private Passenger Auto
 - Commercial Auto
 - Workers' Compensation
 - General Liability
 - Product Liability
 - Medical Malpractice (Claims Made)
- Available on CAS Website New Version 9/1/2011
 <u>http://www.casact.org/research/index.cfm?fa=loss_reserves_data</u>

The CAS Loss Reserve Database

• Can we predict the distribution of outcomes? Or sums of outcomes?

Criteria for a "Good" Stochastic Loss Reserve Model

- Using the upper triangle "training" data, predict the distribution of the outcomes in the lower triangle
 - Can be observations from individual (AY, Lag) cells or sums of observations in different (AY, Lag) cells.
- Using the predictive distributions, find the percentiles of the outcome data.
- The percentiles should be uniformly distributed.
 - Histograms
 - Test with PP Plots/KS tests
 - Plot Expected vs Predicted Percentiles

Illustrative Tests of Uniformity

Uniform Percentiles

Heavy Tailed Percentiles

Predicted

Examples of Tests in Meyers Shi Paper

- Commercial Auto
- 50 Insurers "Selected" going concern insurers
- Tested two stochastic loss reserve models
 - Bootstrap chain ladder (BCL) model
 - Used the "ChainLadder" package in R
 - Overdispersed Poisson for process risk.
 - Bayesian Autoregressive Tweedie (BAT) model
 - Described in the paper

Predicted Percentiles of Outcomes in Meyers Shi

BAT Model

BCL Model

Predicted Percentile of Test Data

BAT, BCL and Posted Reserve % Error

Average Absolute % Error = 27

Percent Error Average Absolute % Error = 30

Posted Reserve

Percent Error Average Absolute % Error = 22

Finding the Right Model

- These models used only paid data. Could we do a better job by including incurred loss data?
- BAT used earned premium data. Does this help or hinder the prediction?
- Is there other external data available?
- Work with other lines of insurance.

A Hint – Use Unpaid Loss Information

Gini Analysis for Unpaid/Paid Ratio

Implications of Using Incurred Claims Data

• I ruled out incremental claims models.

Frequent negative changes with incurred data

- Chose Mack chain ladder model as a base for comparison.
- Also looked at both paid and incurred cumulative data.

The Leveled Chain Ladder Model

- New Model (?) Leveled Chain Ladder
 - Chain ladder applies age-to-age factors to the latest reported (paid or incurred) loss.
 - "Replace" the latest reported loss with a "level" parameter.
- Reflect the uncertainty in the level parameter in the predictive distribution of outcomes.
- Used Bayesian MCMC software, JAGS, to quantify uncertainty in parameter estimates.
- Details in CLRS call paper.

Motivation for LCL Increase Estimates of Variability Over Mack

Design of Retrospective Test For 50 Insurers in CA, PA, WC and OL

• Estimate the predictive distribution of the reported claims at development year 10 for each insurer using both models.

$$\sum_{w=2}^{10} C_{w,10}$$

- Calculate the percentile of the reported sum for each insurer using both model.
- Test the uniformity of the calculated percentiles for both models

Predicted Percentile for Incurred Claims

Commercial Auto - Mack Model

Predicted Percentile of Incurred Claims

Expected Percentile for Incurred Claims

Commercial Auto - Mack Model

Expected Percentile for Incurred Claims

Expected Percentile for Paid Losses

Expected Percentile for Paid Losses

Personal Auto - Mack Model

Predicted Percentile for Incurred Claims

Predicted Percentile of Incurred Claims

Expected Percentile for Incurred Claims

Personal Auto - Mack Model

Expected Percentile for Incurred Claims

Workers' Comp - Mack Model

Predicted Percentile for Incurred Claims

Predicted Percentile of Incurred Claims

Expected Percentile for Incurred Claims

Workers' Comp - Mack Model

Expected Percentile for Incurred Claims

Expected Percentile for Paid Losses

Workers' Comp - Mack Model

Predicted Percentile for Incurred Claims

Other Liability - Mack Model

Predicted Percentile of Incurred Claims

Expected Percentile for Incurred Claims

Other Liability - Mack Model

Expected Percentile for Incurred Claims

CA+PA+WC+OL - Mack Model

Predicted Percentile of Incurred Claims

Predicted Percentile of Incurred Claims

PP-Plot for LCL Model

Expected Percentile for Incurred Claims

Expected Percentile for Incurred Claims

CA+PA+WC+OL - Mack Model

Predicted Percentile of Paid Claims

PP-Plot for LCL Model

Expected Percentile for Paid Claims

Expected Percentile for Paid Claims

Conclusion

- Level Chain Ladder is an improvement over Mack Chain Ladder on cumulative incurred data.
- The conclusion that the predicted range is too narrow still holds.
- Both models perform poorly on cumulative paid data.