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Background

* Risk based capital proposals, e.g. EU Solvency Il
and USA SMI rely on stochastic models.

— VaR@99.5% and TVaR@99%

* There are many stochastic loss reserve models
that claim to predict the distribution of ultimate

losses.
Are any of these models right?



E-Forum Paper
Joint with Peng Shi— Northern lllinois University

* Describes a database
— Data from several American Insurers
— Data for six lines of insurance
— Paid and incurred loss triangles
— Subsequent outcomes
— Available online (Free)

 Predicts the distribution of outcomes of two
models for several insurers for Commercial Auto

Insurance

e Tests the predictions against subsequent reported
outcomes.



The CAS Loss Reserve Database

* Schedule P (Data from Parts 1-4) for several US
Insurers
— Private Passenger Auto
— Commercial Auto
— Workers’ Compensation
— General Liability
— Product Liability
— Medical Malpractice (Claims Made)
* Available on CAS Website — New Version 9/1/2011

http://www.casact.org/research/index.cfm?fa=loss reserves data



http://www.casact.org/research/index.cfm?fa=loss_reserves_data

The CAS Loss Reserve Database
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* Can we predict the distribution of outcomes? Or sums of outcomes?



Criteria for a “Good”
Stochastic Loss Reserve Model

e Using the upper triangle “training” data, predict
the distribution of the outcomes in the lower

triangle
— Can be observations from individual (AY, Lag) cells or
sums of observations in different (AY,Lag) cells.
* Using the predictive distributions, find the
percentiles of the outcome data.

* The percentiles should be uniformly distributed.

— Histograms

— Test with PP Plots/KS tests
* Plot Expected vs Predicted Percentiles



Illustrative Tests of Uniformity
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Examples of Tests in Meyers Shi Paper

e Commercial Auto
* 50 Insurers — “Selected” going concern insurers

e Tested two stochastic loss reserve models

— Bootstrap chain ladder (BCL) model
e Used the “ChainLadder” package in R
* Overdispersed Poisson for process risk.

— Bayesian Autoregressive Tweedie (BAT) model

* Described in the paper
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Frequency
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Finding the Right Model

These models used only paid data. Could we

do a better job by including incurred loss
data?

BAT used earned premium data. Does this
help or hinder the prediction?

Is there other external data available?
Work with other lines of insurance.



A Hint — Use Unpaid Loss Information

Gini Analysis for Unpaid/Paid Ratio
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Implications of Using
Incurred Claims Data

* | ruled out incremental claims models.

— Frequent negative changes with incurred data

e Chose Mack chain ladder model as a base for
comparison.

* Also looked at both paid and incurred
cumulative data.



The Leveled Chain Ladder Model

New Model (?) — Leveled Chain Ladder

— Chain ladder applies age-to-age factors to the latest
reported (paid or incurred) loss.

— “Replace” the latest reported loss with a “level”
parameter.

Reflect the uncertainty in the level parameter in
the predictive distribution of outcomes.

Used Bayesian MCMC software, JAGS, to quantify
uncertainty in parameter estimates.

Details in CLRS call paper.



Motivation for LCL
Increase Estimates of Variability Over Mack
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Design of Retrospective Test
For 50 Insurers in CA, PA, WC and OL

* Estimate the predictive distribution of the
reported claims at development year 10 for
each insurer using both models.

10
ZCW,].O
w=2
* Calculate the percentile of the reported sum for
each insurer using both model.

e Test the uniformity of the calculated percentiles
for both models
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Conclusion

* Level Chain Ladder is an improvement over
Mack Chain Ladder on cumulative incurred
data.

* The conclusion that the predicted range is too
narrow still holds.

* Both models perform poorly on cumulative
paid data.



