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What did pricing/underwritinglook like before 20007

Throes of credit controversy
Legacy systems and little attention to enterprise data initiatives
Mainframe computers
Consistent rating plans...which we all understood
Pricing departments staffed with actuaries
“High touch” underwriting in small commercial
Machine learning (to many of us) meant learning how to use new software

Price optimization relied on collective judgment, not mathematical algorithms
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What changed?

Computing power
Better access to better data
Regulation in support of multivariate analysis (in response to credit controversy)
Statistical rigor
Product management culture

Competition
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Agenda

» The predictive modeling revolution/evolution in insurance pricing
(presented by Claudine)

Estimating claims costs
Understanding policyholder demand

The road to price integration
« Venn diagram of data science
» The revolution spreads (presented by Steve)
Operational efficiency
Underwriting
Marketing
Claims
Agency
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Predictive modeling ininsurance pricing

o Late 1990s — A major revolution in pricing analysis

« Ongoing — An evolution of pricing refinement

Integration of cost
and demand
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Math and statistics knowledge

Parametric Modeling Machine Learning Tools

» Objective: build a predictive model » Objective: learn new things (which may

» User makes assumptions (e.g., ] [ 16l € Ede)

distribution, model structure) and « Find patterns (often complex) in an
specifies preliminary list of explanatory unknown underlying distribution
variables

» Tool may be supervised, unsupervised,
» User guides statistical method in order or blend of the two
to effectively describe a particular

response (e.g., claim frequency) » Result might be a new variable, a tree, a

grouping, a score, etc.
» Result is an algorithm, a set of

parameters, and diagnostics « Examples: principal components

analysis, decision trees, clustering,
« Examples: minimum bias methods, artificial neural networks
linear regression, GLM
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GLMs: the global industry standard for pricing

« Benefits of generalized linear models
» Multivariate method accounts for exposure correlations between variables

« Allows modeler to capture signal and remove noise within statistical
framework but also infuse business knowledge

» Provides useful diagnostics
» Incorporates interactions
« Transparent, easy to explain

02012 T
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Selecting response variable for insurance pricing models

Early Thinking: Current Practice:

» Fit models to loss ratio » Fit models to frequency and severity, or

» Define claim types according to how GliBEL D 555 S

currently priced » Define claim types, balancing

homogeneity and credibility

» Dispersion modeling can address
some degree of heterogeneity

« Alternative model structures can be
used for low volume claim types:
Frequency (3rd party claim) x prob (Bl
claim / 3rd party claim) x Severity (Bl
claim)

» Use existing rating variables (or a
subset)

» Explore various sources of data
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Pure premium vs. loss ratio

« When viewing frequency and severity data separately, easy to discern patterns
from the noise; more difficult with loss ratio
Raw Frequency by Age of Driver Smoothed Frequency by Age of Driver

Loan Axtien By Age
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Factor selection

« Produce a sensible model that explains recent historical experience
and is likely to be predictive of future experience

1 parameter per

Overallmean observation
“Best” Models

Overfit:
Poor predictive power
Explains history

Underfit:
Predictive
Poor explanatory power
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Factor selection

« Factor selection is an iterative process — involving simplification as
well as complication of the model form

« Exclude
«Group
«Curves

Complicate  ARLUSCEE
« Interactions

10
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Factor selection

« Iterate models using statistical diagnostics, practical tests, and
business knowledge to avoid overfitting
Patterns Over Time Chi Square, Wald, AIC, Correlations

Standard Errors

And many more...
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Factor selection

« Seek parsimony
» Group similar discrete levels to reduce volatility
» Fit curves to continuous variables with natural order
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A plethora of predictors

« Early GLMs analyzed traditional rating variables (or subset)

o Current practice is to survey all sources of predictive data — including external
sources

Policy Coverage Risk
(e.g., minimumage of - ’ (e.g., age of home, type
driveron policy) (g T, G VG 23 of car, industry class)

Relationship with
insurance company
(e.g., tenure, distribution channel, affinity)

Insured Financial attributes
(e.g.,age) (e.g., insurance credit score)

Payment and
billing information Prior claims experience
(late pays, payment frequency)

Geography/Environment
(including geo-demographics)

Other lines of business and related claims experience

« Consider the explosion of data with usage-based insurance!

13
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Coping with large numbers of related factors

« Can be hard to interpret output from a GLM that includes a very large
number of related characteristics

» Best to prune the list using variable reduction techniques
» One-way analysis and business judgment

« Test“families” of predictors one at a time to
find most predictive members

» Limited forward regression
« Principal components analysis
» Factor analysis

» Classification and
Regression Trees (CART)

» Random forests

14
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Principal Components Analysis

« Example: External geodemographic data

Sl [BENEINY aCE M GEO_POP_DENSITY 1.50 0.75 0.68
A 100,000 34 5% X
B 50,000 55 6%

GEO_MED_AGE 0.40 1.20 0.34
GEO_UNEMP 2.00 3.00 150

GEO_ PC1 PC2 PC3

UNIT SCORE SCORE SCORE
A 150,013 75,040 68,011
B 75,022 37,566 34,018
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Classification and Regression Trees (CART)

« Example: indicating localization strategies

« Significantly different branch structure suggests data split and model
localization

towerswatson.com
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Interactions: Detection and simplification

« Complex relationships can be simplified using curves, groups, etc.
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Interactions: Detection and simplification
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Model validation

« Holdout samples are effective at validating model
» Determine estimates based on part of data set
» Use estimates to predict other part of data set

Full Test/Training for Large Data Sets Partial Test/Training for Smaller Data Sets

All Data Build

Models

Split Data

Split Data

Test
Data

« Predicted values should be close to actual values for populated cells
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Model validation

e Useful to track how well model fits to hold-out observations

Model Vaidation Model Validation

e 2
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Absolute value: Current model Absolute value: Current model

e But difficult to assess performance between models
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Model validation
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Noise reduction

» “Case Deleted Deviance” by Tony
Lovick & Peter Lee (can be found
at www.actuaries.org.uk)

o Implicitly dampens parameters in
consideration of variability of
parameters

» Factor selection no longer limited
to infout but rather
in/out/dampened
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Mining GLM residuals

o There may be unexplained predictive power in GLM residuals

« Supervised machine learning tools can mine residuals froma GLM and
develop algorithms that group risks with similar residuals

« Results can form basis of a single correction factor to the GLM

« Potential disadvantages of this approach:

Hard to distinguish signal from noise in the residual when no basis for

evaluating residual
Prone to overfitting

Difficult to understand and explain effect on model, which can lead to

implementation issues

towerswatson.com
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www.actuaries.org.uk

Mining GLM residuals

DILBERT By Scott Adams
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Mining GLM residuals

« Current thinking is to identify additional signal in residuals that can be
attributed to a particular high-dimension factor — for example,

Geography (zip code)
Vehicle (VIN)
Worker compensation SIC code

Any factor requiring a large number of small units as building blocks — and
many building blocks have little or no claims experience

o A Bayesian-based data mining method that utilizes the signal in the
residuals to “correct” the GLM results for that high-dimension factor is
easier to control and understand

25
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Geographic spatial analysis

« Spatial Correction

» Residual signal used to adjust score from the multivariate model

Modeled Signal

Population  Unemployment ~ Median  Weather  Education Crime
Rate Age Statistics Lewl Statistics

Density

towerswatson.com

Spatial Correction

Smoothed Low
Residual $
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Geographic spatial analysis

« Spatial Smoothing Methods: Uses knowledge of surrounding areas to
enhance estimates of the underlying risk in each area based on

“Principle of Locality”

Distance-based Methods

towerswatson.com

Adjacency-based Methods
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Vehicle grouping analysis

« Neighboring vehicles: Instead of using latitude/longitude to build
adjacency relationships, use vehicle dimensions

« Once neighbors are determined, similar techniques used for geographic
analysis can be applied

28
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Agenda

« The predictive modeling revolution/evolution in insurance pricing
» Understanding policyholder demand
« Theroad to price integration
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Traditional pricing

Cost .
Models -— High-

dimension
s
Raw
Data

towerswatson.com

Assumptions
Targets
Constraints

Impact
Analysis Rates
Competitive
Analysis Rules

~_

In-force and
Quote Data
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Integrated pricing

Cost .
Models - High-

dimension
e

Demand
\_/
Models

Retention
Data

Competitive
Data

Raw
Experience
Data

tower

Assumptions
Targets
Constraints

Impact
Analysis Rates
Competitive
Analysis Rules

~—_

In-force and
Quote Data
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Policyholder demand

buy, yes/no”)

Models should include

Price-related variables (e.g., quoted premium, price change at renewal, competitive

measures)

Non-price variables (e.g., poli

models

Fit demand models separately for new business conversion and renewal

Demand model is a logistic regression GLM (i.e., Y-variate of GLM is “did they

cy tenure, age of insured, payment method)

« Best to have robust spread of de-correlated price changes
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Policyholder demand
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Understanding elasticity

« Focus on price-related explanatory variables different

« Can re-express as elasticity by wobbling price explanatory variables after fitting

model
Elasticity by Age
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« GLMs can produce negative elasticity; requires complex interaction strategies
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Integrating cost and demand to project volume and profit

Now Year 1
Quotes

}

Conversion

6 Competitors

—

Portfolio —¢ Retention — Portfolio

_—

Expenses Cross-sell

I
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Optimal price?

Expected profit

Results for one policy
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Constraints provide rules to limit the search space

« The solution reflects a wide array of constraints

« Universal constraints

Regulatory
« Local constraints for different Legal
optimization runs Corporate

« Maximum rate changes
» Competitive positions
« Profit ranges

Strategy 1 Strategy 2 Strategy 3 Strategy 4
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Balancing profit and volume

o Can optimize
Profit for a particular volume, or
Volume for a particular profit
over a defined time horizon
« Try different options to understand different balances available

o Generates efficient frontier, which aids understanding of target
selection
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Optimization targets

o Efficient frontier

o Maximize profits (A) —
. Frontier
« Maximize volume (B)
» Increase profits and
volume (C)

Current
Position

Loss Ratio

« Softer targets

(e.g., business mix) (D)
0.690 —

Demand

towerswatson.com ©2012 Towers Watson. Al rights reserved.

Multidimensional optimization

Efficient Frontier

a1
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Example diagnostics

Technical Premium vs. Market Premium
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Number of Policies

Optimization diagnostics

« Duration analysis

» Not overexploiting long-duration customers

towerswatson.com
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Implementation

Profit Uplift Comparison

Percentage Lift in Profit at Equal Volume
35%

30%

250 Increasing table complexity —

20%

Increasing
profit uplift

Percentage lift

15%

10%

5%

0%

Cost Optimization More More Customer Optimal
Model Current complex complex scores/ (individual
Factors A B complex rates)

table
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As our pricing toolkit evolves...

o GLMs continue to be an accurate and useful tool in pricing
o Make sure your GLMs follow best practices and refinements

« Investigate other analytical methods in order to understand data better
and to improve accuracy of models

« Consider practical implications (usefulness) of new pricing tools
Easy to understand and communicate
Available in a timely manner
Capable of implementation

» Strive to understand the policyholder’s reaction to price through
demand modeling

« Consider price optimization as a scientific approach to select deviations
from cost-based indications that achieve volume/profit targets within
specified constraints

45
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Data Science Venn Diagram

Science

The Data Science Venn Diagram by Drew Conway in Zero Intelligence Agents blog, September 30th, 2010. 4%
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