Chain ladder correlations

Greg Taylor

Taylor Fry Consulting Actuaries
University of Melbourne
University of New South Wales

CAS Spring meeting
Phoenix Arizona 20-23 May 2012

Overview

- The chain ladder produces cell-by-cell forecasts of future claims experience
- There are two distinct families of model that support the chain ladder algorithm
- Consideration will be given to the correlations between the forecasts of different cells (conditional on information to date)
- Separately for the two families
- Paper to appear shortly as:
"Chain ladder correlations". Variance 5(2).

Framework and notation

- Claims reserving trapezium

Framework and notation

- Claims reserving trapezium

Framework and notation

- Claims reserving trapezium

Framework and notation

- Claims reserving trapezium

Cumulative row sums

Chain ladder algorithm

- Claims reserving trapezium

Correlations of predictions

Correlations of predictions

Correlations of predictions

Consider correlations of within-row forecasts conditioned on most recent information

$$
\operatorname{Corr}\left[X_{k, j+m}, X_{k, j+m+n} \mid X_{k j}\right]
$$

Correlations of predictions

Consider correlations of within-row forecasts conditioned on most recent information

$$
\operatorname{Corr}\left[X_{k, j+m}, X_{k, j+m+n} \mid X_{k j}\right]=\rho_{k, j+m, j+m+n \mid j}
$$

ODP Mack model

- (ODPM1) Accident periods are stochastically independent, i.e. $Y_{k j}, Y_{h i}$ are independent if $k \neq h$
- (ODPM2) For each k the $X_{k j}$ (j varying) form a Markov chain
- (ODPM3) For each $k=1,2, \ldots, K$ and $j=1,2, \ldots, J-1$,

$$
X_{k, j+1} \mid X_{k j} \sim \operatorname{ODP}\left(f_{j} X_{k j}, \varphi_{j+1}\right)
$$

Parameters f_{j} are referred to as age-to-age factors

Example of a recursive model
Recursive because each observation depends on predecessor in same row

ODP cross-classified model

- (ODPCC1) All random variables Y_{kj} are stochastically independent
- (ODPCC2) For each $k=1,2, \ldots, K$ and $j=1,2, \ldots, J$,
a) $Y_{k j} \sim \operatorname{ODP}\left(\alpha_{k} \beta_{j}, \varphi_{j}\right)$
b) $\sum_{j=1}^{J} \beta_{j}=1$

Non-recursive because each observation independent of predecessors in same row

Relevance of ODP Mack and cross-classified models

- Very different models
- But in both cases chain ladder algorithm gives MLE forecasts
- But what about correlations of the forecasts under the respective models?

Conditional correlations of predictors

- Explicit expressions for $\rho_{k, j+m, j+m+n \mid j}=\operatorname{Corr}\left[X_{k, j+m}, X_{k, j+m+n} \mid X_{k j}\right]$ can be obtained (see paper)
- These are not especially informative in themselves
- Subsequent discussion concentrates on their properties

Properties of conditional correlations

- ODP Mack model
- $\rho_{k, j+m, j+m+n j} \downarrow$ as $n \uparrow$

Properties of conditional correlations

Properties of conditional correlations

- ODP Mack model
- $\rho_{\mathrm{k}, \mathrm{j}+\mathrm{m}, \mathrm{j}+\mathrm{m}+\mathrm{nj} \mathrm{j}} \downarrow$ as $\mathrm{n} \uparrow$
- $\rho_{\mathrm{k}, \mathrm{j}+\mathrm{m}, \mathrm{j}+\mathrm{m}+n \mathrm{j}} \uparrow$ as any
$-\varphi_{i} \uparrow, i=j+1, \ldots, j+m$
$-\varphi_{i} \downarrow, i=j+m+1, \ldots, j+m+n$

Properties of conditional correlations

Proper

Development period j =
123 ... J

- $\rho_{\mathrm{k}, \mathrm{j}+\mathrm{m}, \mathrm{j}+\mathrm{m}+\mathrm{n} \mid \mathrm{j}} \uparrow$ as any
$-\varphi_{i} \uparrow, i=j+1, \ldots, j+m$
$-\varphi_{i} \downarrow, i=j+m+1, \ldots, j+m+n$

Correlation increases as overdispersion increases in this region
...and decreases in this 18 region

Properties of conditional correlations

- ODP Mack model

- $\rho_{\mathrm{k}, \mathrm{j}+\mathrm{m}, \mathrm{j}+\mathrm{m}+\mathrm{nlj}} \downarrow$ as $\mathrm{n} \uparrow$
- $\rho_{k, j+m, j+m+n \mid j} \uparrow$ as any
$-\varphi_{i} \uparrow, i=j+1, \ldots, j+m$
- $\varphi_{i} \downarrow, i=j+m+1, \ldots, j+m+n$
- $\rho_{k, j+m, j+m+n \mid j} \uparrow$ as any $f_{i} \uparrow$,
$\mathrm{i}=\mathrm{j}+1, \ldots, \mathrm{j}+\mathrm{m}+\mathrm{n}$ provided that
$-\varphi_{i} f_{i} /\left(f_{i}-1\right) \uparrow, i=j+1, \ldots, j+m$
$-\varphi_{i} f_{i} /\left(f_{i}-1\right) \downarrow, i=j+m+1, \ldots, j+m+n$

Properties of conditional correlations

Properties of conditional correlations

- ODP Mack model
- $\rho_{k, j+m, j+m+n j j} \downarrow$ as $n \uparrow$
- $\rho_{k, j+m, j+m+n \mid j} \uparrow$ as any
$-\varphi_{i} \uparrow, i=j+1, \ldots, j+m$
$-\varphi_{i} \downarrow, i=j+m+1, \ldots, j+m+n$
- $\rho_{k, j+m, j+m+n \mid j} \uparrow$ as any $f_{i} \uparrow$,
$\mathrm{i}=\mathrm{j}+1, \ldots, \mathrm{j}+\mathrm{m}+\mathrm{n}$ provided that
$-\varphi_{i} f_{i} /\left(f_{i}-1\right) \uparrow, i=j+1, \ldots, j+m$
$-\varphi_{i} f_{i} /\left(f_{i}-1\right) \downarrow, i=j+m+1, \ldots, j+m+n$
- ODP cross-classified model
- $\rho_{k, j+m, j+m+n \mid j} \downarrow$ as $n \uparrow$
- $\rho_{k, j+m, j+m+n l j} \uparrow$ as any
$-\varphi_{i} \uparrow, i=j+1, \ldots, j+m$
$-\varphi_{i} \downarrow, i=j+m+1, \ldots, j+m+n$
- $\rho_{k, j+m, j+m+n \| j} \uparrow$ as any
$-\beta_{i} \uparrow, i=j+1, \ldots, j+m$
$-\beta_{i} \downarrow, i=j+m+1, \ldots, j+m+n$

Again effect of increasing or decreasing claims development

Claims development in recursive and nonrecursive models

- Claims development effects of correlations expressed in terms of:
- The f_{i} for recursive models
- The β_{i} for non-recursive models
- BUT the two can be shown to be related:
$-f_{j}=\sum_{i=j}{ }^{j+1} \beta_{i} / \sum_{i=j}^{j} \beta_{i}$
- Then...

Properties of conditional correlations (cont'd)

- ODP Mack model
- $\rho_{k, j+m, j+m+n j} \downarrow$ as $n \uparrow$
- $\rho_{\mathrm{k}, \mathrm{j}+\mathrm{m}, \mathrm{j}+\mathrm{m}+\mathrm{n} \mid \mathrm{j}} \uparrow$ as any
- $\varphi_{i} \uparrow, i=j+1, \ldots, j+m$
$-\varphi_{i} \downarrow, i=j+m+1, \ldots, j+m+n$
- $\rho_{k, j+m, j+m+n j j} \uparrow$ as any $f_{i} \uparrow$,
$\mathrm{i}=\mathrm{j}+1, \ldots, \mathrm{j}+\mathrm{m}+\mathrm{n}$ provided that
$-\varphi_{i} \mathrm{f}_{\mathrm{i}} /\left(\mathrm{f}_{\mathrm{i}}-1\right) \uparrow, \mathrm{i}=\mathrm{j}+1, \ldots, \mathrm{j}+\mathrm{m}$
$-\varphi_{i} f_{i} /\left(f_{i}-1\right) \downarrow, i=j+m+1, \ldots, j+m+n$
- ODP cross-classified model
- $\rho_{k, j+m, j+m+n j} \downarrow$ as $n \uparrow$
- $\rho_{\mathrm{k}, \mathrm{j}+\mathrm{m}, \mathrm{j}+\mathrm{m}+\mathrm{nj}} \uparrow$ as any
- $\varphi_{i} \uparrow, i=j+1, \ldots, j+m$
$-\varphi_{i} \downarrow, i=j+m+1, \ldots, j+m+n$
- $\rho_{k, j+m j+m+n j} \uparrow$ as any $f_{i} \uparrow$, $\mathrm{i}=\mathrm{j}+1, \ldots, \mathrm{j}+\mathrm{m}+\mathrm{n}$ provided that
$-\Phi_{i+1} f_{i} /\left(f_{i}-1\right) \uparrow, i=j+1, \ldots, j+m$
$-\Phi_{i+1} f_{i} /\left(f_{i}-1\right) \downarrow$,
$i=j+m+1, \ldots, j+m+n$

Comparison between correlations of recursive and non-recursive models (1)

- Consider the case of recursive and non-recursive models with common values of the f_{i}, φ_{i}
- The models have been seen to have similar ordering properties
- Are they actually different?

Comparison between correlations of recursive and non-recursive models (2)

- Denote
$-\rho_{k, j+m, j+m+n \mid j}$ by $\rho^{N R}{ }_{k, j+m, j+m+n j j}$ for the non-recursive model
$-\rho_{k, j+m, j+m+n \mid j}$ by $\rho_{k, j+m, j+m+n \mid j}^{R}$ for the recursive model
- Then
$-\rho^{N R_{k, j+m, j+m+n} \mid j} \geq \rho_{k, j+m, j+m+n \mid j}$
$-\rho^{N R_{k, j+m, j+m+n \mid j}} / \rho_{k, j+m, j+m+n \mid j}^{R} \rightarrow 1$ as $j \rightarrow \infty$

Conclusion

- The recursive and non-recursive models considered here are quite different but generate identical (chain ladder) forecasts
- However their prediction errors differ
- How should one decide which of these chain ladder models to adopt?
- Correlation properties of forecasts might provide one criterion for the decision
- e.g. if one wishes to assume heavy correlations, one might adopt the recursive form

Questions?

