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Sources of Information 
 
For more information about LSM and LSMWP, please visit 
http://www.casact.org/research/lsmwp. 

 
The following provide technical detail on the model. 
 
 “Modeling Loss Emergence and Settlement Processes-CAS Loss Simulation 

Model Working Party Summary Report,” Casualty Actuarial Society Forum, Winter 
2011, http://www.casact.org/pubs/forum/11wforum/LSMWP.pdf. 

 
 Shang, Kailan, “Loss Simulation Model Testing and Enhancement”, Casualty 

Actuarial Society E-Forum, Summer 2011. 
http://www.casact.org/pubs/forum/11sumforum/Shang.pdf  

 
 "Parameterizing the Loss Simulation Model",  Ball State University Research 

Course, LSMWP   http://www.casact.org/research/lsmwp/BSUPaper.pdf  
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"Parameterizing the Loss Simulation Model" 
 
Task: 
 Fit distributions to real data from anonymous source. 
 Use this result to design flexibility into LSM. 
 Model used Richard Vaughan's previous modeling work done in APL. 
 
Ball State University class did work for this paper in 2007. 
 The paper documents the various areas investigated. 
 "R" code used to fit models is included in paper. 
 Parametric survival models were used to fit censored distributions. 
 
Examples of models developed: 
 Univariate modeling of lags and claim size with covariates 
 Correlation between Settlement Lag and Claim Size for Auto BI 
 Zero modification of the Claim Size distribution. 
 Effect of Deductibles on Collision Losses; Pareto Model 
 Interaction of Report Lag and Settlement Lag 
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"Modeling Loss Emergence and Settlement Processes" 
 
Tested distributions of: 
 Number of  claims (frequency) 
 Size of  ultimate loss (severity)  
 Correlated frequencies between lines using copulas. 
 
Emphasis in Paper: 
 
 Document the LSMWP's work in developing the LSM. 

 
 Document the “R” code used in performing various tests. 

 
 Provide references for those who want to explore the modeling further. 

 
 Provide visual as well as formal tests:  QQPlots, histograms, densities, etc. 

 
 Document the model for users and developers wishing to customize the model. 



page 5 of 18  Marker_Spr2013_sessionC1 

Two types of testing 
 
Q:  Is the model output consistent with the specified parametric distribution? 
 
"Non-constructive" test: 

Run chi-square test of output distribution vs. theoretical distribution. 
 
"Constructive" test: 
 

1. Fit simulated output to the theoretically correct parametric model. 
 

2. If fit is good, are the input parameter values within the confidence limits for 
the parameters? 

 
Try to use "constructive" tests: 
+   Provides a way for modeler to parameterize model from his/her data. 
−   More work than simple chi-square test. 
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"Loss Simulation Model Testing and Enhancement" 
 
The DRMC and Committee on Reserves in 2011 recognized that much additional 
work was needed and issued a call for papers. 
 
Areas of  interest for call papers: 
 Applications to reserving problems. 
 Enhancements to model. 
 Further testing of  model in specific areas. 

 
Kailan Shang's paper makes substantial contributions to the areas: 
 Further testing of  the LSM. 
 Enhancement of  Model. 
 Reserving, through the testing of  the case reserve adequacy parameters. 

 
See Shang's presentation at the 2011 CLRS site. 
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Reserve Adequacy Factors 
 
Shang tested and affirmed many of the LSM distributions. 
 
Reserve adequacy factors allow modeling of reserve values between report and 

settlement dates.  They may depend on claim department philosophy. 
 
Shang found that: 

The reserve adequacy factors input were not consistent with simulated output. 
 
This led to simplification of factors in 2012, one of the "model enhancements". 

Model specifies distribution of factors at "times" 0%, 40%, 70% and 90% of the 
interval between report date and settlement date. 

Hai You's presentation explains these times in more detail. 
 

This enhancement makes it easier to test the distribution from detailed claim data.  
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Determine and Test Adequacy Factors: 
 
The test is "constructive" (defined earlier). 
We discuss only the factor "adequacy0" at the 0% time.  Others are similar. 
 
Ran model with adequacy0 distributions specified as: 
 lognormal (μ= −0.239855, σ=0.518642), implying mean = 0.9,  s.dev. = 0.5   
Then examined adequacy0 output distribution and fit to lognormal.   
 
"R" code: 
hist(adeqauacy0,main="Histogram of observed adequacy0,", 

 freq=FALSE,breaks=100,xlim=c(0,7)) 

plot(density(adequacy0),  

 main="Density estimate of adequacy0,",  xlim=c(0,7)) 

plot(density(log(adequacy0)), 

 main="LogDensity estimate of adequacy0,", xlim=c(-3,3)) 

plot(ecdf(adequacy0),  ## ecdf is empirical distribution function 

 main="Empirical cdf of adequacy0,", xlim=c(0,7)) 
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Descriptive statistics for adequacy0.   
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Determine and Test Adequacy Factors: 
 

Logdensity graph shows that lognormal is likely to fit well. 
 
R code to fit the data: 
 
> dist0<-fitdistr(adequacy0,densfun='lognormal', 
 control=list(trace=1,fnscale=10000)); 

> dist0$estimate 
   meanlog      sdlog  
-0.2417236  0.5191148 
> -dist0$loglik 
[1] 39933.05 

 
Note closeness of fitted values to the inputs  μ= −0.239855, σ=0.518642. 
 
The fitting was done on "training data" = the first 80 of the 100 LSM simulations. 
The model fit was then tested on the "test data" = last 20 simulations. 
 
Chi-square tests (not shown here) shows model fits well. 
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Enhancement:  Two-state Regime Switching Model 
 
Shang suggested this enhancement, which has been implemented. 
 
Frequency and severity distribution may not be stable over time.  Some reasons: 
 Structural changes 
 Cyclical patterns 
 Idiosyncratic nature 

 
To handle this, we allow the model to be in one of two "states" for each month. 
The "state" over time follows a stationary Markov Chain: 

If Xn is the state at time n, then Pr[Xn+1 = j | Xn = i ] = pi j, for i, j = 1,2. 
The conditional probability of Xn+1 | X1, X2 … Xn depends only on Xn 

 
There are two states and time is discrete for this Markov Chain. 
 
The modeler specifies the transition probabilities pi j. 
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Testing the Two-state Regime Switching: 
 
We did not find many sources discussing this topic. 
The best is Anderson and Goodman's "Statistical Inference about Markov Chains"1  
 
We ran the LSM with 12 accident months and 10,000 simulations.    

The programmer modified the model to output the value of the "state" . 
Transition probabilities were p11 = 0.80 and p22 = 0.40. 
 
Resultant transition matrix is P = 0.80 0.20

0.60 0.40
 
 
 
 

 

 
Ran several tests based on the Anderson-Goodman ("A-G") paper. 
 

                                                            
1 Anderson, T.W and Goodman, Leo A, "Statistical Inference about Markov Chains". Annals of Mathematical Statistics (1957), available on 
line. 
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Testing the Two-state Regime Switching: 
 
Test 1:  Calculate Estimated Transition Probabilities: 
 
A-G shows that the maximum likelihood estimate of pi j is: 
 

11 11
* *

*
1 1

ˆ  with ( ),  and ( )ij
ij ij ij i i
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n
p n n t n n t

n  
     .   

Here ni j(t) is the number of observations in state i at time t and state j at time t+1, 
 while *( )in t is the number in state i at time t. 
 We can add across t if the transition probabilities are stationary. 
 
The fitted transition matrix is  
 
 0.8008729 0.1991271

0.5968471 0.403 29
ˆ

05
P

 
 
 
 

 ,   very close to the input matrix. 
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Testing the Two-state Regime Switching: 
Test 2:  Test hypothesis that fitted probabilities match the inputs. 

A-G shows that, under the null hypothesis,   202
*

0
1

ˆij ij
i

j ij

p p
n

p


 , for i = 1, 2,   

 has the asymptotic chi-square distribution with 1 degree of freedom. 

Here the 0
ijp  are the transition probabilities input to the model. 

Chi-square values are not significant. 

Thus, we cannot reject the null hypothesis that 0
ijp  are the correct probabilities. 

Test 3:  Test the stationary distribution. 

The stationary distribution for matrix P0  is π1 = 0.75 and π2 = 0.25. 

The model uses the stationary distribution as the initial distribution. 

Therefore, the distribution at each time should have stationary distribution. 

A chi-square test confirms this.



page 15 of 18  Marker_Spr2013_sessionC1 

Testing the First Order Markov Chain Assumption: 
 
 
Defn:  A Markov chain is of order n if the distribution of Xt depends on  
{Xt-1 , Xt-2 …  Xt-n} ,  but not on any observations before time t-n. 
 
The traditional term "Markov chain" means a first-order Markov Chain. 
 
We test whether our state process is first-order, assuming it is second-order. 
 
Test 4 (non-constructive): 
 

If the chain is first-order with the given input parameters, then the  
two-step transition matrix P(2) =  20P 0.76 0.24

0.72 0.28
 
 
 
 

 . 

 
Chi-square tests on the observed two-step transition probabilities confirm this.  
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Testing the First Order Markov Chain Assumption: 
 
Test 5 (constructive): 
 
Terminology:   pi j k = Pr [Xt+2=k | Xt = i , Xt+1=j ] 
   ni j k (t)= number of observations with Xt = i , Xt+1=j , and Xt+2=k  
The second-order chain is a first-order chain if pi j k  is independent of i. 
 
Testing a second-order chain is not complex because a second-order chain is a 
first-order chain as follows: 

Define the "state" at time t as i, j if Xt-1 = i and Xt = j (22 states in all).   

The transition probabilities are pij , mk =   if 
0 otherwise

ijkp m j




  

 The original chain is first order if, for all j and k,  pijk are identical for all i. 
 

The transition matrix for the modified chain is P =  . 
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Testing the First Order Markov Chain Assumption: 
 
Test 5 continued: 
A-G shows that the maximum likelihood estimate of pi j k is: 
 

10 10
* *
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Using the model's output, we obtain  

|
1 1 | 0.8013 0.1987 0 0

ˆ 1 2 | 0 0 0.5934 0.4066
2 1 | 0.7981 0.2019 0 0
2 2 | 0 0 0.5996 0.4004

i j

P

 
 
 
   
 
  
 

. 

 

Compare to the null hypothesis that 
0.80 0.20 0 0

0 0 0.60 0.40
0.80 0.20 0 0

0 0 0.60 0.40

P

 
 
   
 
 
 

 

For each ij , the statistic
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 is asymptotically chi-square with one d.f. 

Each chi-square result confirms that the null hypothesis should not be rejected.
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Summary 
 
Reserve adequacy factors and the two-state switching appear to work as intended.   
We ran the LSM with known parameter values and fit the output to the theoretical 
models, using chi-square tests to verify the "null hypothesis." 
 
The work is intended to help modelers in several ways: 
 
 A paper showing containing the R code will be furnished later. 
 The code and paper show how to organize "user data" into arrays and to fit 

the data to parametric distributions. 
 The fitting procedures described enable the modeler to set LSM parameters 

for reserve adequacy and for the two-stage switching. 
 The presentation starts with an outline of all the previous work done to design 

and test parameters for other distributions, such as frequency and severity.  
 
Acknowledgement:  Wenwen Ying, a student at the University of Michigan, 
developed the testing procedures and wrote most of the "R" code. 


