

Assessing Strategic Decisions in a Weighted Co-TVaR Framework

CAS Spring Meeting Sheraton Seattle Hotel Seattle, WA

MAY 16-17, 2016

Blake Berman, FCAS

Contents

(1) Two Costs

- Managing a Department Store

(2) The Rental Charge

- Interpretation
- Implementation

(3) The Risk Charge

- Risk Model Output: The Scenario View a simple example
- VaR and Contribution Measures
- Probability Transforms
- Utility Transforms
- Weighted TVaR
- Key Concepts for Risk Charge

(4) Risk Charge Example

- ABC Insurance Company
- Applying the Allocation Framework to inform a business decision

Two Costs

Managing a Department Store

- As store manager, you would like to allocate overhead to departments in the store.
- Your goal is to provide an equitable way to evaluate the profitability of individual departments.
- Each department is essential to your business model of being a 'one-stop shop.'
- But each department has different kinds of costs:
 - Appliances sell infrequently for higher prices, and require warehousing to maintain full supply. Dedicated retail floor space is relatively small.
 - Clothing turns over quickly and generates lower margins, but occupies the majority of your retail floor space.

- You conclude there are two kinds of costs:
 - A rental charge incurred by occupation of floor space
 - A **risk charge** incurred from maintaining inventory for unpredictable sales

The Rental Charge

Interpretation

• The **rental charge** for floor space is akin to **regulatory** or **rating agency capital requirements** in insurance. There is unavoidable cost to make your products available.

• Allocating the rental charge is a straightforward proportion of floor space. In the insurance context, we use either **BCAR** or **RBC** to compute the charge.

• The rental charge recognizes the brand value of the firm, the fact that policies are sold in packages, and that firm value reflects the multi-line product offering.

• In general, the **rental charge** is **proportional** to the **volume** (i.e. premium and reserve level) of the individual lines of business.

Implementation Simple Example

Our business is comprised of three segments

 Premium and reserve charges are defined by formula (BCAR or RBC).

• Business segments are priced at different expected loss ratios due to market conditions and differences in risk.

• Total rental charge is the sum of the charge for the individual parts: A*D+B*C*E

 The resulting allocation is highly related to business volume, with minor adjustments from the risk factors.

χ.		🔁 <u>Busi</u> ı	Business Segment				
		Α	В	С	Total		
(A)	Premium Charge	0.40	0.50	0.30			
(B)	Reserves Charge	0.35	0.35	0.20			
(C)	Sum of Pmt Patterns	1.50	0.90	0.50			
(D)	Premiums	5,000	1,500	25,000	31,500		
(E)	Expected Losses	3,196	908	12,064	16,168		
+	Total Rental Charge	3,678	1,036	8,706	13,421		
	Allocation %	✓ 27%	8%	65%	100%		

Descriptive Statistics

ELR	64%	61%	48%	51%
CV	1.9	1.3	2.0	1.5

The Risk Charge

Risk Model Output: The Scenario View

VaR (Value-at-Risk) and Contribution Measures

• We may decide to assign the 'mostimportant' pain point a weight of one, and zero weight to all other realizations.

• That point would be called VaR (Value-At-Risk), in this case at the 90th percentile.

• The contributions to VaR from individual segments add up to the total VaR, because the realization is one complete scenario.

• The contributing average amounts are called co-VaR.

• The Risk Charge is the excess of the weighted average over the straight average.

• Co-VaR is generally an unstable measure for capital allocation.

Ň			<u>Busines</u>	<u>s Segment</u>	<u>Losses</u>	
	Realization	Weight	Α	В	С	Total
/aR	1	0.0	498	595	-	1,093
	2	0.0	241	1,718	104	2,064
	3	0.0	2,125	684	226	3,035
m	4	0.0	417	97	2,546	3,061
b the total	5	0.0	535	3,742	-	4,278
is one 📃 🔪	6	0.0	6,9 78	122	93	7,193
	7	0.0	158	143	11,788	12,089
	8	0.0	19,027	98	-	19,125
nounts	9	1.0	1,476	192	29,386	> 31,053
	10	0.0	508	1,689	76,494	78,691
			$\overline{\ }$			
ess of the		Straight Ave	3,196	908	12,064	16,168
raight		Wght Ave	1,476	192	29,386	31,053
		Percentage	5%	1%	95%	100%
abla				Ri	sk Charge	14,885

Probability Transforms An easy way to define smooth weights

• One way to define the weights is with a probability transform. The weights are defined by a curve that effectively makes adverse realizations more likely.

• The weights are a smooth way to recognize that the worst results are even more painful than the proportional size of their losses.

• Curve shape can be altered by changing parameter values, but only so much.

• In this example, we show a Wang transform. There are other curves.

Realization	Weight	Α	В	С	Total
1	1.0	498	595	-	1,093
2	1.9	241	1,718	104	2,064
3	2.7	2,125	684	226	3,035
4	3.7	417	97	2,546	3,061
5	4.8	535	3,742	-	4,278
6	6.1	6,978	122	93	7,193
7	8.0	158	143	11,788	12,089
8	10.7	19,027	98	-	19,125
9	15.4	1,476	192	29,386	31,053
10	34.6	508	1,689	76,494	78,691

% Allocation	8%	2% R	2% 89% Bisk Charge		
	00/	20/	000/	1000/	
Wght Ave	3,353	993	36,050	40,397	
Straight Ave	3,196	908	12,064	16,168	

Wang Transform Graphical View

• Increasing 'Alpha' in the Wang transform implies more pain for the increasingly adverse realizations.

• For example, if Alpha=1.0, Realization 10 is 34.6 times as painful as Realization 1 *per dollar*.

• Choosing alpha is arbitrary, but when the curve is viewed under the scenario view, management can clearly understand its effect.

Alpha:	0.25	0.50	0.75	1.00
Scenario	Weight	Weight	Weight	Weight
1	1.0	1.0	1.0	1.0
2	1.2	1.4	1.6	1.9
3	1.3	1.7	2.2	2.7
4	1.4	1.9	2.7	3.7
5	1.5	2.2	3.3	4.8
6	1.6	2.5	3.9	6.1
7	1.7	2.9	4.8	8.0
8	1.8	3.3	6.0	10.7
9	2.0	4.0	7.9	15.4
10	2.4	5.8	14.1	34.6

Utility Transforms Another way to define weights using total loss

• Another family of weighting schemes defines the curve with formulas that depend on total loss, *in other words the painper-dollar is explicitly changing*.

• It's still just a way to calculate this realization weights.

• These weights are an Esscher transform with h=.45.

• The curve has a different shape than that of the Wang transform, but we chose h=.45 to provide the same risk loading overall.

		<u>Busines</u>	<u>s Segment</u>	<u>Losses</u>		
Realization	Weight	Α	В	С	Total	
1	1.0	498	595	-	1,093	
2	1.0	241	1,718	104	2,064	
3	1.1	2,125	684	226	3,035	
4	1.1	417	97	2,546	3,061	
5	1.1	535	3,742	-	4,278	
6	1.2	6,978	122	93	7,193	
7	1.4	158	143	11,788	12,089	
8	1.7	19,027	98	-	19,125	
9	2.3	1,476	192	29,386	31,053	
10	8.7	508	1,689	76,494	78,691	
	Straight Ave	3,196	908	12,064	16,168	
	Wght Ave	2,537	1,120	36,739	40,397	
	% Allocation	6%	3%	91%	1009	
	•		► Ri	isk Charge	24.228	

Weighted TVaR Explanation of the Statistic

• TVaR₅₀ (Tail Value at Risk at the 50th Percentile) is the average total loss for all realizations larger than the 50th percentile.

• The arbitrary threshold of the 50th percentile is chosen to quantify risk preferences.

• Co-TVaR_A is the average losses from business segment A over the same realizations. Note that these realizations are not in strict ascending order for segment A losses.

Realization	Α	В	С	Total		
1	498	595	-	1,093		
2	241	1,718	104	2,064		
3	2,125	684	226	3,035		
4	417	97	2,546	3,061		
5	535	3,742	-	4,278		
6	6,978	122	93	7,193		
7	158	143	11,788	12,089		
8	19,027	98	-	19,125		
9	1,476	192	29,386	31,053		
10	508	1,689	76,494	78,691		
	\checkmark			\checkmark		
		L		TVaR ₅₀		
Co-TVaR ₅₀	5,629	449	23,552	29,630		
Percentage	19.0%	1.5%	79.5%	100.0%		

Business Segment Losses

TVaR Thresholds (Return Periods)

 If we chose the 80th percentile (i.e. 1 in 5 Return Period), the TVaR is larger.

• In this example, the tail risk is driven by Business Segment C. The allocation to C is more at the higher threshold.

• To allocate capital to support different levels of adverse loss events, we can weight the two TVaRs together. We will have to choose the weights.

Business Segment Losses							
Realization	Α	В	С	Total			
1	498	595	-	1,093			
2	241	1,718	104	2,064			
3	2,125	684	226	3,035			
4	417	97	2,546	3,061			
5	535	3,742	-	4,278			
6	6,978	122	93	7,193			
7	158	143	11,788	12,089			
8	19,027	98	-	19,125			
9	1,476	192	29,386	31,053			
10	508	1,689	76,494	78,691			
				TVaR ₈₀			
Co-TVaR ₈₀	992	940	52,940	54,872			
Percentage	1.8%	1.7%	96.5%	100.0%			
Г							
Co-TVaR ₅₀	5,629	449	23,552	29,630			
Percentage	19.0%	1 5%	79 5%	100 0%			

TVaR Weighting

• Let's assign a weight of 43% to Co-TVaR₈₀ and 57% to Co-TVaR₅₀. The resulting weighted total TVaR is 40,397, producing the the same risk charge as in the previous examples.

Weight		Α	В	С	Total
0.43	Co-TVaR ₈₀	992	940	52,940	54,872
	Percentage	1.8%	1.7%	96.5%	100.0%
0.57	Co-TVaR ₅₀	5,629	449	23,552	29,630
	Percentage	19.0%	1.5%	79.5%	100.0%
Weighted	Co-TVaR _{wgt}	3,651	658	36,087	40,397
Total	Percentage	9.0%	1.6%	89.3%	100.0%

Weighted TVaR Under the Scenario View

• By using two TVaR measures we describe our preferences between different 'zones' of the loss distribution.

• The preferences 1 and 2.9 over the two zones can be directly calculated from the 43%/57% weights and the thresholds of 50th and 80th percentile.

• The realization weights are a step function. Each step (there can be more than two) occurs at an important capital management point, (e.g. earnings miss, single downgrade, solvency impairment).

Realizat	ion	Weight	Α	В	С	Total
	1	0.0	498	595	-	1,093
	2	0.0	241	1,718	104	2,064
\setminus	3	0.0	2,125	684	226	3,035
	4	0.0	417	97	2,546	3,061
	5	0.0	535	3,742	-	4,278
	6	1.0	6,978	122	93	7,193
	7	1.0	158	143	11,788	12,089
	8	1.0	19,027	98	-	19,125
	9	2.9	1,476	192	29,386	31,053
	10	2.9	508	1,689	76,494	78,691

		Risk Charge				
% Allocation	9%	2%	89%	100%		
Wght Ave	3,651	658	36,087	40,397		
Straight Ave	3,196	908	12,064	16,168		

Summary of What We Have Done

• We have allocated Risk Charge to individual business segments using multiple approaches which can often be non-transparent.

• We have done so under the scenario view, making the difference in risk preferences clear between the approaches.

• The risk preference curve affords management the understanding of which realizations are driving allocation decisions. Defining different pain points on the sorted realization tally is straightforward.

	Business	Segment A	Weighted	Risk	
Weighting	Α	В	С	Average	Charge
Straight Average	20%	6%	75%	16,168	-
VaR ₉₀	5%	1%	95%	31,053	14,885
Wang (Lambda = 1.0)	8%	2%	89%	40,397	24,228
Esscher (h=0.45)	6%	3%	91%	40,397	24,228
TVa R_{50} (43%) and TVa R_{80} (57%)	9%	2%	89%	40,397	24,228

The Weighted Total Charge

Completing the Example

- Our management decides to adopt the weighted TVaR framework for risk charge.
- The overall weight to risk charge allocation is set at 50%.
- The resulting allocation is a representation of the cost to both maintain the multi-line P&C insurance business as a going concern, as well as the volatile cost to maintain solvency in the short term.

Weight to Risk Charge: 0.5

Risk Charge (Weighted TVaR)	9%	2%	89%	100%
Rental Charge	27%	8%	65%	100%
Weighted Total Allocation	18%	5%	77%	100%

Key Concepts

• Allocation of risk charge can be viewed in the common framework of the <u>Scenario View</u>, where a weight is assigned to each realization and co-measures are computed as weighted averages.

• <u>Probability transforms</u> make adverse realizations effectively more likely by assigning larger weights to these realizations.

• <u>Utility transforms</u> stipulate that the pain-per-dollar increases with increasingly adverse realizations, and calculate a curve which is also expressed as set of weights over realizations.

• In principle, the risk manager could define any set of weights across the realizations. We call the weights the <u>Risk Preference Function</u>.

• Weighting Co-TVaR at different thresholds together creates a step function comparable to the smoother curves. This approach to the Risk Preference Design has the following strengths:

- Ease of calculation, explanation, and interpretation
- Reliance on a common metric in risk management (TVaR)
- Compatibility with prevalent practice of defining zones of operating loss impact: missing earnings, losing enough to warrant a downgrade, destruction of solvency.

Practical Example – Risk Charge

Allocation of Capital Cost: The Co-TVaR Framework

- We can define risk preferences explicitly by assigning a weight to losses on each realization of the model
- Common ways to compute the weights include:
 - Probability transforms
 - Utility transforms
 - Weighted Co-TVaR
- The risk manager can define any **Risk Preference Function**.
- Weighted Co-TVaR is a step function with several strengths:
 - Ease of calculation, explanation, interpretation
 - Reliance on a common metric in risk management
 - Intuitive application to defining zones of operating loss impact: missing earnings, losing enough to warrant a downgrade
 - Destruction of solvency

Example – ABC Insurance Company Capital Allocation

Capital Allocation

(\$M)

LOB	2016 Plan NWP	2015 YE Net Reserve	AY UW Capital	AY Cat Capital	NWP / Capital	Reserve Capital	Net Res / Capital	Total Capital
Homeowners	916.0	377.6	198.9	1,174.9	0.7	49.3	7.7	1,423.2
Personal Auto	592.5	377.0	113.2	21.1	4.4	63.3	6.0	197.6
Commercial Auto	1,093.2	1,811.6	249.0	39.0	3.8	436.2	4.2	724.2
Commercial Property	3,775.3	2,742.3	1,736.4	2,823.3	0.8	168.6	16.3	4,728.4
Commercial General Liability	5,929.6	12,979.0	1,268.0	0.0	4.7	3,242.9	4.0	4,510.9
Workers Compensation	2,436.1	7,765.3	594.4	0.0	4.1	1.577.9	4.9	2,172.2
Medical Malpractice	360.1	1,302.1	92.4	0.0	3.9	633.6	2.1	726.0
Products Liability	57.5	1,410.5	25.4	0.0	2.3	561.9	2.5	587.3
Casualty Portfolio (Under Review)	766.3	Not Modeled <	320.8					320.8
Total	15,926.7	28,765.5	4,598.5	4,058.3	1.8	6,733.8	4.3	15,390.6
			-					· · · ·

- 2% of total risk capital is allocated to Casualty Portfolio, which is currently under review.
- Largest consumers of risk capital are commercial property underwriting (30%) and reserve exposure from GL (21%) and WC (10%) LOB's.
- In this framework, we can analyze the marginal impact of portfolio decisions in a holistic context.
- Decisions made on a going forward basis will not effect reserve runoff risk, but will effect exposure to future reserve risk:
 - Therefore, whenever possible try and model impact to subject portfolio on an AY basis not a CY basis.

Company ABC Capital Model Output UW Loss Co-TVaR Distribution

Selected Capital Allocation Framework

Weighted Co-TVaR

Trigger Measure: UW Loss Distribution (AY + Incoming Reserves)

BenchmaRQ Capital Modeling Analytics Framework for Assessing Strategic Decisions

- · Increasing premium maximizes net profit
- Combined QS / XOL program provides best ROE
- Reducing direct writings for a profitable book is less efficient than purchasing quota share reinsurance
- Purchasing XOL reinsurance is not as capital efficient as QS *unless* the reinsured line is one of the most important contributors to overall company risk. (i.e. – for a diversifying LOB, QS is generally more capital efficient that XOL)

Applying the Framework

Company ABC

Example Casualty Portfolio

(\$M)

	Status Quo (Gross)	Reduce Direct Premium	Increase Direct Premium	Buy XOL Reins	Buy Combined XOL / QS	Buy 50% QS
Change in Net Premium	0.0	(200.0)	200.0	(34.2)	(100.0)	(383.1)
Change in Net Profit	0.0	(28.5)	18.5	(13.0)	(8.6)	(31.1)
"Opportunity Cost" CR*	N/A	85.8%	90.8%	61.9%	91.4%	91.9%
Year 1 Capital Relief	0	-83.7	(99)	43.1	44.8	122.1
Net Premium	766	566	966	732	666	383
Net Profit	70.7	42.2	89.1	57.7	62.1	39.6
Net CR	90.8%	92.5%	90.8%	92.1%	90.7%	89.7%
Net CV	16.2%	17.1%	15.3%	15.4%	16.1%	18.6%
Net 1:100 UW Loss	(287)	(222)	(362)	(264)	(247)	(196)
Net 1:250 UW Loss	(361)	(277)	(455)	(326)	(310)	(251)
Net Capital Allocated	321	247	420	269	257	174
Net ROE	22.0%	17.1%	21.2%	21.4%	24.1%	22.7%

A company with a credible capital allocation framework which has management buy-in is able to make strategic decisions in a consistent, unbiased framework.

GUY CARPENTER

* - Opportunity Cost CR is the CR of the marginal premium ceded, grown, or non-written.

In addition to actuarial analysis, management must consider:

- company risk tolerance •
- future prospects for the business unit •
- relationship with distribution partners / • reinsurers
- strategic importance of product offering ٠ to customers 26

