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Health Actuary of the Future

0-Year-Old Model
s [1o More
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The Health Actuary
of the Future
Must Bea
Multitasker

Health actuaries, whose role
has traditionally been financial (pricing; reserving), will re-
quire a considerable amount of new learning, because they are
increasingly working in a broader world populated with other
health care disciplines such as physicians, health economists,
and epidemiologists. Perhaps more so than other actuarial disci-
plines, health actuaries work in a multidisciplinary environment
as a member of the team rather than as its captain.

the health actuary
of the future at a minimum will need to be part clinician, part
behavioral psychologist, part health economist, and part epi-
demiologist. Not to mention biostatistician, although that is a
topic for a different book. In part, this transformation is being

driven by ACA changes in health insurance.




A common mis-conception about health spend
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Can we lower medical costs oy giving the neediest patients detter care?

BY ATUL GAWANDE

Gawande’s solution: care intervention programs that focus on
the 5% that account for 60% of health spending.




Typical Health Cost Distribution
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* Distribution of allowed charges within the SCIO Health Analytics database (multi-million member national database).




Key Concept: Member Transition

Baseline Year Subsequent Year
Baseline
Baseline Year | percentage LOW MODERATE HIGH
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$25,000+ 0.9%
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Current research focused on risk transitions

e As studies show, traditional approaches to predicting future high
utilizers are not too accurate.

e My own research is focused on the application of actuarial
models to risk transition in chronic populations, using an NHS
(UK) dataset (800,000 lives; 25 years longitudinally, including
clinical and behavioral data).

e Actuaries have traditionally built models to predict mortality (Life
Tables). These allow us to price products rationally, knowing
how deaths will occur in a large population.

e The idea is to build similar morbidity models. Knowing how
diseases progress (statistically) we can better target
interventions and evaluate whether our interventions worked.

 An example of a (simple) transition model for diabetes foll




Research focused on risk transitions

 The concept: Markov Models (transition models)

e Capture the multi-state transition probabilities inherent in medical
states (and cost).

e Simple Markov Concept:
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* Transitions between states have associated probabilities. Transition
is a function of (multiple) risk factors + time.

Problem: medical states are time-independent.

mm) Need for time-dependent (semi-Markov) models.
Current thinking is to develop a 2-stage model with time-in-state
estimated by Weibull distribution and transitions (dependent o

imated time-in-state) by exponential (e.g. log-normal
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Human vs. Machine

e This study assessed the predictions
made by:

e Physicians
* Case managers
* Nurses

e “..none of the AUC values were
statistically different from chance

Allaudeen N, Schnipper JL, Orav EJ, Wachter RM, Vidyarthi AR. Inability of providers
to predict unplanned readmissions. J Gen Intern Med. 2011;26(7):771-6
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Predictive Modeling — End of Life

The Problem:

12% of Beneficiaries
Driving 69% of the Expense

6% of Medicare Beneficiaries
die annually.

Second to last year of life |
represents 13% of the total
Medicare FFS spend. '

Last year of life represents ~30%
of the total Medicare FFS spend.




Predictive Modeling — End of Life

Over-medicalized death is defined as:

v' Chemotherapy for cancer patients within 14 days of death;

v" Unplanned hospitalization within 30 days of death;

v" More than one emergency department (ED) visit within 30 days of death;
v ICU admission within 30 days of death; or

v’ Life-sustaining treatment within 30 days of death.

* Ho, T. H.,, Barbera, L., Saskin, R., Lu, H., Neville, B. A., & Earle, C. C. (2011). Trends in the aggressiveness of end-of-life cancer care in the

universal health care system of Ontario, Canada. J Clin Oncol, 29(12), 1587-1591. do0i:10.1200/JC0.2010.31.9897. Retrieved
from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3082976/pdf/zlj1587.pdf

- Earle, C. C,, Park, E. R., Lai, B., Weeks, J. C., Ayanian, J. Z., & Block, S. (2003). Identifying potential indicators of the quality of end-of-life
cancer care from administrative data. Journal of Clinical Oncology, 21(6), 1133-1138. doi: 10.1200/jc0.2003.03.059 Retrieved
from http://jco.ascopubs.org/content/21/6/1133.long




Predictive Modeling — End of Life

Based on a Logistic Regression Model, an EOL risk score is
calculated for each member of the population:
e Risk scores range in value from 0.0-1.0.

* Model is based on the following member attributes (121 in all):
e Ageand gender;
e Race;
e Zip (and zip-derived measure of poverty);
e Clinical Grouper Flags (65 HCCs);
e (Certain acute DRGs;
e Baseline admission count(s);
e Baseline readmission count(s);
e Baseline ER visit count(s);
 Baseline admission via ER indicator;

e Baseline dollars spent for healthcare resources.




Predictive Modeling — End of Life

Variables that add the most to the weighting:

Acute Myocardial Infarction

Acute Leukemia

Craniotomy with major device implant
Cardio-Respiratory Failure & Shock

Metastatic Cancer & Acute Leukemia

Lung, Upper Digestive Tract and Other Severe Cancers
Septicemia or Severe Sepsis
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Predictive Modeling — End of Life

Model Performance:

Percentage of Total OM Deaths

a0% | _ B ___;__-_;_;_____;_ Distribution of members by risk score (10,000 life group)
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How Can Data Help Achieve the Triple Aim?

e What’s in it for the healthcare consumer or provider? In
healthcare, consumers don’t get to make choices —
providers and payers make choices for them.

e Traditional price tools aren’t applicable to consumers,
and decreased utilization can be negative to a provider.

e Value-based purchasing (by consumers and providers)
and consumer-driven healthcare can help to bring
healthcare into line with other industries. It is widely
recognized that we need to pay for quality, not volume.




Opportunity Analysis

e Traditional Predictive Modeling ranks patients high to
low in terms of a predicted outcome.

e Opportunity analysis adds another dimension:
Intervenability*.

* My colleague, Dr. Geraint Lewis of the UK National Health Service prefers the word
“impactibility.” As Churchill said of the United States and Great Britain, we are two great

nations separated by a common language, or with typical American directness, in the
words of George and Ira Gershwin, “Tomato Tomato.”




Opportunity Analysis

 Group members into Condition Categories, assign a program, and
model the...

— Program cost (resource requirements to achieve a targeted level of result); and
— Program financial outcomes (what may be saved due to intervention).

Sort Members Match Members Net Financial

by Severity, to Impact

Need, Programs based on

Intervenability Targeted Level
of Result

Sort Program
Type, Effectiveness
Resource Cost




Opportunity Analysis

More information:

9 APPLYING THE ECONOMIC MODEL:
THE EXAMPLE OF OPPORTUNITY ANAL

9.1 INTRODUCTION

In Chapter 8 we introduced the conceptof the Risk Managementec
planning care management programs by assessing the potentialecoi
intervention or program. We have named this multi-dimension:
intervention planning O pportunity Analysis to highlight the fact tt
program sponsors on the idea that high-utilizing patients in a popul:
for simultaneously improving the quality of care while reducing net

QUALITY & GOVERNANCE

By Geraint Lewis, Heather Kirkham, lan Duncan, and Rhema Vaithianathan

How Health Systems Could Avert
‘Triple Fail’ Events That Are
Harmful, Are Costly, And Result
In Poor Patient Satisfaction

ABSTRACT Health care systems in many countries are using the “Triple
Aim”—to improve patients’ experience of care, to advance population
health, and to lower per capita costs—as a focus for improving quality.
Population strategies for addressing the Triple Aim are becoming
increasingly prevalent in developed countries, but ultimately success will
also require targeting specific subgroups and individuals. Certain events,
which we call “Triple Fail” events, constitute a simultaneous failure to
meet all three Triple Aim goals. The risk of experiencing different Triple
Fail events varies widely across people. We argue that by stratifying
populations according to each person’s risk and anticipated response to
utilization. For a program to

be successful requires discrimination between high-opportunity members, and other members
that may be high cost or high risk, but represent a lesser opportunity for achieving the “Triple
Alim,” defined by former CMS Administrator Don Berwick MD as advancing the health of
populations while simultaneously improving individual patients’ experiences of care and
reducing per capita health care costs [23, 161, 173]. Extending Berwick’s work, we have defined

the concept of the “Triple Fail,” meaning those health outcomes

preventing triple fail occurrences within populations [173].

three failures: they are costly, they represent a suboptimal health outcome and they result in a
poor patient experience. Opportunity Analysis can be thought of as technique for identifying and

that simultaneously exhibit
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